

Level 2 Flora & Vegetation Survey Lake Disappointment Project Prepared For Reward Minerals Limited

June 2018 FINAL (Version 2)

Prepared by:
Botanica Consulting
PO Box 2027
Boulder WA 6432
90930024

Disclaimer

This document and its contents are to be treated as confidential and are published in accordance with and subject to an agreement between Botanica Consulting (BC) and the client for whom it has been prepared and is restricted to those issues that have been raised by the client in its engagement of BC. Neither this document nor its contents may be referred to or quoted in any manner (report or other document) nor reproduced in part or whole by electronic, mechanical or chemical means, including photocopying, recording or any information storage system, without the express written approval of the client and/or BC.

This document and its contents have been prepared utilising the standard of care and skill ordinarily exercised by Environmental Scientists in the preparation of such documents. All material presented in this document is published in good faith and is believed to be accurate at the time of writing. Any person or organisation who relies on or uses the document and its contents for purposes or reasons other than those agreed by BC and the client without primarily obtaining the prior written consent of BC, does so entirely at their own risk. BC denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be endured as a consequence of relying on this document and its contents for any purpose other than that agreed with the client.

Quality Assurance

An internal quality review process has been implemented to each project task undertaken by BC. Each document and its contents are carefully reviewed by core members of the Consultancy team and signed off at Director Level prior to issue to the client. Draft documents are submitted to the client for comment and acceptance prior to final production.

Document Job Number: 2016/54 & 2016/80

Prepared by: Lauren Pick
Senior Environmental Consultant
Botanica Consulting

Reviewed by: Andrea Williams

Director

Botanica Consulting

Approved by: Jim Williams

Director

Conte	ents F	Page No.
1	Introduction	1
1.1	Project Description	1
1.2	Objectives	1
2	Regional Biophysical Environment	3
2.1	Regional Environment	3
2.2	Soils and Landscape Systems	
2.3	Remnant Vegetation	
2.4	Climate	
2.5	Hydrology	
2.6	Land Use	
3	Survey Methodology	16
3.1	Desktop Assessment	_
3.2	Field Assessment	
3.2.1	Sampling Quadrats	
3.2.2	Targeted Survey	
3.2.3	Personnel involved	
3.2.4	Scientific licences	
3.3	Data Analysis Tools	
3.3.1	PATN Analysis ———————————————————————————————————	
3.3.2	EstimateS	
3.4	Flora survey limitations and constraints	
4	Results	29
=		_
4.1	Desktop Assessment	
4.1.1	Literature Review	
4.1.2	Flora of Conservation Significance	
4.1.3	Field Assessment	
4.2	Flora of conservation significance	
4.2.1	Tecticornia sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1)	
4.2.2	Tecticornia sp. nov. A and Tecticornia sp. nov. B (unrecognised taxon, K.A. Shepherd 867) CS	
4.2.3	Tecticornia aff. calyptrata (potentially distinct taxon, K.A. Shepherd 867) CS	
4.3	Floristic Communities	
4.3.1	Heath of mixed <i>Tecticornia</i> spp. on Salt Lake edge (CD-CSSSF1)	
4.3.2	Open mixed herbs in clay-loam depression (CD-OGHSR1)	
4.3.3	Low forest of Allocasuarina decaisneana over open scrub of Acacia/ Grevillea and mid-dense hum	
404	grass of <i>Triodia basedowii</i> on sand dunes/ swales (D-CFW1)	
4.3.4	Open low woodland of Corymbia opaca over low scrub of Acacia/Grevillea spp. and mid-dense hu	
	grass of <i>Triodia basedowii</i> on sand dunes/swales (D-HG1)	
4.3.5	Scrub of Acacia/Eremophila/Grevillea spp. over mid-dense hummock grass of Triodia basedowii or	
	dunes/ swales (D-HG2)	
4.3.6	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Senna artemisioides</i> and mixed dwarf scrub in drain	-
	depression (OD-AFW1)	
4.3.7	Open low woodland of <i>Eucalyptus camaldulensis/ Corymbia</i> spp. over mid-dense hummock grass	
	spp. in creekline (OD-EW1)	
4.3.8	Low woodland of Hakea lorea/ Melaleuca glomerata over low heath of Fimbristylis eremophila in de	•
	depression (OD-OS1)	
4.3.9	Open low woodland of <i>Corymbia</i> spp. over low scrub of <i>Acacia</i> spp. and mid-dense hummock grast <i>Triodia</i> spp. in sandplain (P-HG1)	
4.3.10		
	bivenosa and mid-dense hummock grass of Triodia basedowii in sandplain (P-HG2)	
4.3.11	Scrub of <i>Acacia</i> spp. over mixed low scrub and mid-dense hummock grass <i>of Triodia pungens</i> on hillslope (RH-AFW1)	rocky
4.3.12		
7.0.12	Grevillea spp. and mid-dense hummock grass of <i>Triodia</i> spp. on rocky hillslope (RH-MWS1)	

4.3.13	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Eremophila/ Senna</i> spp. and mid-dense hummock grass <i>Triodia basedowii</i> on rocky plain (RP-AFW1)	.50
4.3.14		
	Triodia basedowii on rocky plain (RP-HG1)	
4.4	Vegetation Condition	
4.5	Introduced Plant Species	
4.5.1	Cenchrus ciliaris (Buffel Grass)	
4.6	Floristic Composition of the Lake Disappointment Potash Project Quadrats	.56
4.6.1	Species Richness and accumulation estimates	.58
4.7	Vegetation of Conservation Significance	.60
4.7.1	Matters of National Environmental Significance	.60
4.7.2	Matters of State Environmental Significance	
5	· · · · · · · · · · · · · · · · · · ·	62
6	Bibliography	63
Apper	ndices	
Conser	dix 1: Regional map of the Lake Disappointment Potash Project survey area including DPaW Flora of vation Significance and areas of Conservation Significance	
	dix 2: Vegetation maps of the Lake Disappointment Potash Project survey area	
	dix 3: List of species identified within each vegetation community.	
	dix 4: GPS coordinates of Flora of Conservation Significance locations within Lake Disappointment Potash survey area (GDA94)	
	dix 5: GPS coordinates of Quadrat locations and Riparian Monitoring Transects (GDA94)	
	dix 6: Quadrat Datasheets	
	dix 7: Quadrat Photographs	
	dix 8: PATN Analysis results	
	dix 9: Vegetation Condition Rating	
	: Soil Landscape Systems within the Lake Disappointment Potash Project survey area	
	2: Remaining Beard Vegetation Associations within Western Australia (DPaW, 2015)	
	3: Definitions of Conservation Significant Flora	
	l: Definitions of conservation significant communities	
	5: Scientific Licences of Botanica Staff coordinating the survey	
Table 7	: Previous Flora and Vegetation Surveys within the Lake Disappointment Potash Project and surrounding	
	3: Likelihood of occurrence for Flora of Conservation Significance within the survey area	
	9: Summary of vegetation types within the Lake Disappointment Potash Project survey area	
	0: Vegetation assemblage for Heath of mixed <i>Tecticornia</i> spp. on Salt Lake edge	
	12: Vegetation assemblage for Low forest of <i>Allocasuarina decaisneana</i> over open scrub of <i>Acacia/ Grevil</i>	
	d-dense hummock grass of <i>Triodia basedowii</i> on sand dunes/ swales	
Table 1	3: Vegetation assemblage for Open low woodland of Corymbia opaca over low scrub of Acacia/Grevillea	spp.
and mid Table 1	d-dense hummock grass of <i>Triodia basedowii</i> on sand dunes/swales	41 s of
Triodia	basedowii on sand dunes/ swales	
mixed (dwarf scrub in drainage depression	43
dense	hummock grass of <i>Triodia</i> spp. in creekline	
Fimbris	7: Vegetation assemblage for Low woodland of <i>Hakea lorea/ Melaleuca glomerata</i> over low heath of stylis eremophila in drainage depression	45
	8: Vegetation assemblage for Open low woodland of <i>Corymbia</i> spp. over low scrub of <i>Acacia</i> spp. and m	
Table 1	9: Vegetation assemblage for Open shrub mallee of <i>Eucalyptus gamophylla/ E. kingsmillii</i> subsp. <i>kingsmiw</i> scrub of <i>Acacia bivenosa</i> and mid-dense hummock grass of <i>Triodia basedowii</i> in sandplain	illii
Table 2	20: Vegetation assemblage for Scrub of <i>Acacia</i> spp. over mixed low scrub and mid-dense hummock grass pungens on rocky hillslope	of
inoula	pangene on rocky miliotope	40

Table 21: Vegetation assemblage for Open shrub mallee of Eucalyptus gamophylla/ E. kingsmillii subsp. kingsr	
over low scrub of Acacia/ Grevillea spp. and mid-dense hummock grass of Triodia spp. on rocky hillslope	
Table 22: Vegetation assemblage for Low woodland of Acacia spp. over low scrub of Eremophila/ Senna spp. a	
mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	
Table 23: Vegetation assemblage for Open low woodland of <i>Corymbia aspera</i> over low scrub of <i>Acacia</i> spp. ar mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	51
Table 24: Vegetation Condition Rating for Vegetation types of the Lake Disappointment Potash Project survey	
Table 25: Vegetation communities with corresponding quadrats	
Figures	
Figure 1: Regional map of the Lake Disappointment Potash Project survey area	2
Figure 2: Map of Interim Biogeographic Regionalisation of Australia (IBRA)	
Figure 3: Map of Soil Landscape Systems within the Lake Disappointment Potash Project survey area	
Figure 4: Pre-European Vegetation Associations within the Lake Disappointment Potash Project survey area	
Figure 5: Mean monthly rainfall and maximum temperature (January 1974 to January 2017) for the Telfer Aero	
weather station (#13030) (BoM, 2017a)	
Figure 6: Monthly rainfall and mean monthly rainfall (January 2013 to March 2017) for the Telfer Aero weather station (#13030) (BoM, 2017a)	13
Figure 7: Average annual pan evaporation and evapotranspiration of Western Australia (BoM, 2017a)	
Figure 8: Surface Hydrology of the Lake Disappointment Potash Project survey area (data obtained from	
Geoscience Australia, 2001)	15
Figure 9: Quadrat locations, survey area boundary and GPS tracks traversed throughout the Lake Disappointm	
Potash Project survey area	
Figure 10: Diagram of riparian monitoring site layout	
Figure 11: Riparian Vegetation Monitoring Program	
Figure 12: Flora of Conservation Significance identified within the LDP Project survey area	
Figure 13: Vegetation Condition Rating of the Lake Disappointment Potash Project survey area	
Figure 14: Species accumulation curve	
District	
Plates Plate 1: Tecticornia en Sunchina Lako (K.A. Shanhard et al KS 967) (P1)	21
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	31 32
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 32
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 32 33
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 32 33
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 32 33 37
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 32 33 37 38
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 33 37 38 39 ck
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 33 37 38 39 ck
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 33 37 38 39 ck 40 ock
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 32 33 37 38 39 ck 40 ock 41 sand
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42
Plate 1: <i>Tecticornia</i> sp. Sunshine Lake (K.A. Shepherd <i>et. al</i> KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42 age
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42 ige 43 nage
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42 42 43 43
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42 ige 43 44 nage 45 of
Plate 1: Tecticomia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42 ige 43 44 nage 45 of
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 ock 41 sand 42 age 43 nage 45 of
Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 oock 41 sand 42 ige 43 nage 45 of 45 of 45 visual 46 a 47 ky
Plate 1: Tecticomia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)	32 33 37 38 39 ck 40 oock 41 sand 42 ige 43 nage 45 of 45 of 46 a 47 ky

Plate 19: Open low woodlar	d of <i>Corymbia aspera</i> over low so	crub of <i>Acacia</i> spp. and n	nid-dense hummock grass of
Triodia basedowii on rocky	lain		51
Plate 20: Cenchrus ciliaris (suffel grass)		55

Glossary

Acronym	Description
ANCA	Australian Nature Conservation Agency.
BAM Act	Biosecurity and Agriculture Management Act 2007, WA Government.
BC	Botanica Consulting.
BoM	Bureau of Meteorology.
CALM	Department of Conservation and Land Management (now DPaW), WA Government.
DAFWA	Department of Agriculture and Food, WA Government.
DEC	Department of Agriculture and 1 ood, WA Government. Department of Environment and Conservation (now DPaW), WA Government.
DEH	Department of Environment and Heritage Australian Government.
DEP	Department of Environment Protection (now DER), WA Government.
DEWHA	Department of the Environment, Water, Heritage and the Arts (now DotEE), Australian Government
DER	Department of Environment Regulation (formerly DEC, DoE), WA Government.
DMP	Department of Mines and Petroleum (formerly DoIR), WA Government.
DoE	Department of Environment (now DER/DPaW), WA Government.
DoIR	Department of Industry and Resources (now DMP), WA Government.
DotEE	Department of the Environment and Energy (formerly DSEWPaC, DEWHA, and DEH), Australian Government.
DoW	Department of Water, WA Government.
DPaW	Department of Parks and Wildlife (formerly DEC, CALM, DoE), WA Government.
DSEWPaC	Department of Sustainability, Environment, Water, Population and Communities (now DotE, formerly DEH, DEWHA), Australian Government.
EP Act	Environmental Protection Act 1986, WA Government.
EP Regulations	Environmental Protection (Clearing of Native Vegetation) Regulations 2004, WA Government.
EPA	Environmental Protection Authority, WA Government.
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999, Australian Government.
ESA	Environmentally Sensitive Area.
На	Hectare (10,000 square metres).
IBRA	Interim Biogeographic Regionalisation for Australia.
IUCN	International Union for the Conservation of Nature and Natural Resources – commonly known as the World Conservation Union.
Km	Kilometre (1,000 metres).
LDP Project	Lake Disappointment Potash Project (including Talawana Track)
MVG	Major Vegetation Groups.
NVIS	National Vegetation Information System.
OEPA	Office of the Environmental Protection Authority, WA Government.
PEC	Priority Ecological Community.
Reward	Reward Minerals Limited.
TEC	
	Threatened Ecological Community.
WA	Threatened Ecological Community. Western Australia.
WA WAHERB	<u> </u>

Executive Summary

Botanica Consulting (BC) was commissioned by Reward Minerals Limited (Reward) to undertake a Level 2 flora and vegetation survey of the Lake Disappointment Potash (LDP) Project (referred to as the 'survey area'), which is located within the Little Sandy Desert, approximately 138 km south of Telfer and 285 km east of Newman, Western Australia. The survey was initially conducted in autumn from the 20th to the 25th April 2013, covering an area of 89,130 ha (of which 60,886 ha was covered by Lake Disappointment). Forty-three quadrats (50m X 50m) were established during the initial survey. These quadrats were revisited in spring from the 17th October to the 19th October 2013. Additional surveys were conducted in September and December 2016, covering an area of approximately 134,800 ha, of which 70,567 ha was covered by Lake Disappointment. The 43 quadrats established in 2013 were re-visited in September 2016 and an additional 74 quadrats were established. The additional surveys included surveying the Talawana track, which provides access to the Project area (surveyed to a width of 1 km X 220 km length) and a minimum 2 km buffer around the proposed disturbance footprint for the LDP Project (including proposed borefield and area of potential groundwater drawdown). A total of 117 quadrats were established within the final survey area. All 117 quadrats were revisited in autumn (post wet season) from the 6th to the 10th March 2017.

Fourteen vegetation types were identified within the survey area. These vegetation types were located within six different landform types and comprised of eight major vegetation groups, which were represented by a total of 47 Families, 134 Genera and 327 Taxa (including 84 annual taxa).

Species composition assessments indicate there was minimal heterogeneity in species composition across the survey area, with majority of vegetation types intermixed into floristic groups despite differences in both dominant stratum taxa and landform; however, three distinct supergroups were identified. The first supergroup comprised of a mix of vegetation types identified in the field including quadrats from the dunefields, sandplains, open depressions (including Eucalypt quadrats associated with Mackay creek), rocky hillslopes and rocky plains. The second supergroup comprised quadrats from the Acacia Forests and Woodlands open depression (OD-AFW1) located in an isolated patch on the eastern edge of Mackay creek. The third supergroup comprised closed depression quadrats from the lake edge (CD-CSSSF1) and open herb community in low-lying depressions (CD-OGHSR1). Species composition of the riparian vegetation (CD-CSSSF1) showed little variation along the entire boundary of the lake, and was more closely related to low lying drainage depressions of the open herb community (CD-OGHSR1) than the dunefield/ sandplain, open depression and rocky communities; however, both communities were delineated into distinct floristic groups. The Chaos 2 richness estimator provided an estimated species richness of 269 species in 117 sample sites (quadrats). Species richness recorded for the 117 quadrats surveyed was 284 species (including annuals) which indicates survey intensity was adequate.

No Threatened Flora taxa listed under the Commonwealth *Environment Protection and Biodiversity Conservation (EPBC) Act 1999* or listed under the *Wildlife Conservation (WC) Act 1950*¹ were recorded within the survey area. One Priority Flora taxon as listed by the Department of Parks and Wildlife (DPaW) was recorded within the survey area; *Tecticornia* sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1) was identified within the Heath of mixed *Tecticornia* spp. on Salt Lake edge vegetation type. Two unrecognised taxa of *Tecticornia* (as identified by K.A Shepherd 867) were also identified in the area, which are considered to be of Conservation Significance; *Tecticornia* sp. Nov A and *Tecticornia* sp. Nov B (K.A Shepherd 867). These taxa are presently undergoing further taxonomic work by the Western Australian Herbarium (WAHERB). A third *Tecticornia* specimen; *Tecticornia* aff. *calyptrata*, identified by Kelly Shepherd as a potentially distinct taxon related to *Tecticornia calyptrata* is also provisionally considered to be of Conservation Significance and is also presently undergoing further taxonomic work by WAHERB.

¹ Biodiversity Conservation Act 2016 received assent on 21 September 2016 with Parts of the Act coming into effect on 3 December 2016. Once fully enacted with enabling subsidiary regulations, it will replace the *Wildlife Conservation Act 1950*.

No Threatened Ecological Communities (TEC) pursuant to Commonwealth or State legislation were identified within the survey area. The survey area does not contain any world or national heritage places, wetlands of international importance (Ramsar Wetlands). Lake Disappointment is however listed by the Department of the Environment and Energy (DotEE) and Australian Nature Conservation Agency (ANCA) as a Nationally Important Wetland of Western Australia.

No Priority Ecological Communities (PEC) as listed by the Department of Parks and Wildlife (DPaW) were recorded within the survey area. No ecosystems listed under the International Union for Conservation of Nature (IUCN) Red list of Ecosystems occur within the survey area.

Approximately 16,550 ha southern extremity of the survey area is located within the proposed Lake Disappointment Nature Reserve (listed under the Environmental Protection Authority (EPA) Red Book recommendations for Conservation Reserves 1975-1993) which covers an area of 366,700 ha. The Lake Disappointment Nature Reserve was first listed in the EPA Red Book as an area of proposed conservation and proposed in the DPaW Goldfields, Regional Management Plan 1994-2004 however the recommendation was for the proposal to be deferred and addressed in the Pilbara Regional Management Plan. To date this proposed reserve has not been gazetted.

Approximately 350 ha of the survey area (mid-section of the Talawana track) is located within the Rudall River National Park which is listed as a Class A National Park managed by the DPaW.

Approximately 70,567 ha of the survey area is located in an Environmentally Sensitive Area (ESA) as listed under the *Environmental Protection (EP) Act 1986* which encompasses Lake Disappointment. An additional 350 ha of the survey area (mid-section of the Talawana track) is also located within an ESA which encompasses the entire Rudall River National Park.

Based on the vegetation condition rating scale adapted from Keighery, 1994 and Trudgen, 1988 (ranging from 'pristine' to 'completely degraded'), three vegetation types were rated as 'poor', one rated as 'good' and the remaining eleven vegetation types had a vegetation condition rating of 'very good'. One introduced species was identified within the survey area; *Cenchrus ciliaris* (Buffel grass). According to the Department of Agriculture and Food Western Australia (DAFWA) this species is not listed as a Declared Plant under Section 22 of the *Biosecurity and Agriculture Management (BAM) Act 2007*.

1 Introduction

1.1 Project Description

Botanica Consulting (BC) was commissioned by Reward Minerals Limited (Reward) to undertake a Level 2 flora and vegetation survey of the Lake Disappointment Potash (LDP) Project (referred to as the 'survey area'), which is located within the Little Sandy Desert, approximately 138 km south of Telfer and 285 km east of Newman, Western Australia. The survey covered an area of approximately 134,800 ha of which 70,567 ha was covered by Lake Disappointment (Figure 1). A total of 117 quadrats (50m X 50m) were established within the survey area, and surveyed over multiple seasons/ years in accordance with DPaW and EPA Technical Guidelines for Terrestrial Flora and Vegetation surveys.

Reward proposes to abstract potassium-rich brines from sediments associated with Lake Disappointment and to produce sulphate of potash by means of solar evaporation of the brine. The proposal includes the construction and use of associated mine infrastructure including evaporation ponds, water supply borefield, processing plant, offices, workshop, accommodation and roads. Waste salt would be stored in permanent stockpiles on the Lake Disappointment playa.

1.2 Objectives

The survey was conducted in accordance with *Guidance for the Assessment of Environmental Factors* (No. 51) Terrestrial Flora and Vegetation Surveys for Environmental Impact Assessment in Western Australia (EPA, 2004) and Technical Guide - Flora and Vegetation Surveys for Environmental Impact Assessment – December 2016 (DPaW & EPA, 2016). The objectives of the assessment were to:

- gather background information on flora and vegetation in the target area (literature review, database and map-based searches);
- identify significant flora, vegetation/ecological communities and assess the potential sensitivity to impact;
- conduct a field survey to verify / ground truth the desktop assessment findings through targeted and detailed survey;
- undertake floristic community mapping to a scale appropriate for the bioregion and described according to the National Vegetation Information System (NVIS) structure and floristics;
- undertake vegetation condition mapping;
- assess the project area's plant species diversity, density, composition, structure and weed cover, using NVIS classification system for vegetation description;
- assess Matters of National Environmental Significance (MNES) and indicate whether potential
 impacts on MNES as protected under the EPBC Act are likely to require referral of the project to
 the Commonwealth DotEE; and
- determine the State legislative context of environmental aspects required for the assessment

Assessments on the potential impacts of the project development have been conducted and provided in a separate document; *Lake Disappointment Potash Project-Flora and Vegetation Impact Assessment* (BC, 2017).

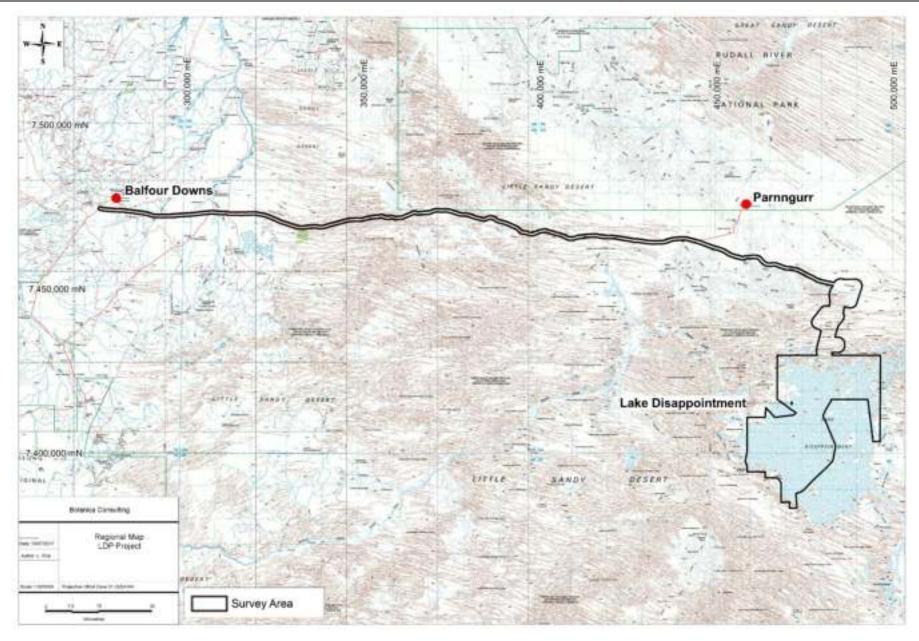


Figure 1: Regional map of the Lake Disappointment Potash Project survey area

2 Regional Biophysical Environment

2.1 Regional Environment

The survey area lies within the Fortescue Botanical District and Keartland Botanical District of WA. The Fortescue Botanical District consists of predominantly tree and shrub-steppe communities with *Eucalyptus* trees, *Acacia* shrubs and *Triodia* species. Some Mulga occurs in valleys and there are short-grass plains on alluvia (Beard, 1990). The Keartland Botanical District consists predominantly of shrub steppes of *Acacia* and *Grevillea*, and *Triodia* spp. on dunes and swales. Patches of desert oak and Mulga also occur within the area (Beard, 1990).

Based on the Interim Biogeographic Regionalisation of Australia (IBRA), Version 7 (DotEE, 2012), the survey area is located within the Pilbara Bioregion and Little Sandy Desert Bioregion of WA (Figure 2). These IBRA Regions are further divided into subregions (Figure 2), with the survey area located within the:

- Chichester (PIL1) and Fortescue Plains (PIL2) subregion of the Pilbara Bioregion²; and
- Rudall (LSD1) and Trainor (LSD2) subregion of the Little Sandy Desert Bioregion^{2, 3}.

The Pilbara Bioregion has a semi-desert tropical climate, with active drainage in the Fortescue, De Grey and Ashburton river systems (McKenzie, May and McKenna, 2002). The Chichester Subregion (PIL 1) comprises the northern section of the Pilbara Craton. It is characterised by undulating Archaean granite and basalt plains including significant areas of basaltic ranges. Vegetation consists of plains supporting a shrub steppe characterised by *Acacia inaequilatera* over *Triodia pungens* hummock grasslands, while *Eucalyptus leucophloia* tree steppes occur on ranges (Kendrick & McKenzie, 2001). The Fortescue Plains Subregion (PIL2) is characterised by alluvial plains and drainage lines. Extensive salt marsh, mulgabunch grass, and short grass communities occur on alluvial plains in the east. Deeply incised gorge systems occur in the western (lower) part of the drainage system. River gum woodlands fringe the drainage lines. This subregion serves as the northern limit of Mulga (*Acacia aneura*). An extensive calcrete aquifer (originating within a palaeo-drainage valley) feeds numerous permanent springs in the central Fortescue, supporting large permanent wetlands with extensive stands of river gum and cadjeput *Melaleuca* woodlands (Kendrick, 2001a).

The Little Sandy Desert Bioregion comprises red Quaternary dune fields with abrupt Proterozoic sandstone ranges of the Bangemall Basin. It includes the headwaters and course of the Rudall River. The region includes Savory Creek and the headwaters of the Rudall River, two desert rivers with near-permanent wetlands along their courses. Small permanent rock hole wetlands associated with ranges and uplands are locally significant water sources and have high biological and cultural significance. Small artificial wells have been constructed as water sources along the Canning Stock Route (McKenzie et. al., 2002).

The Rudall Subregion (LSD1) is characterised by sparse shrub-steppe over *Triodia basedowii* on stony hills, with River Gum communities and bunch grasslands on alluvial deposits in and associated with ranges (Kendrick, 2001b). The Trainor Subregion (LSD2) is characterised by shrub steppe of Acacias, *Aluta maisonneuvei* and Grevilleas over *Triodia schinzii* on sandy surfaces. Vegetation also includes sparse shrub-steppe over *Triodia basedowii* on stony hills, with Eucalyptus and Coolibah communities and bunch grasslands on alluvial deposits and drainage lines associated with ranges (Cowan & Kendrick, 2001).

² Subregions of the haul road

³ Subregions of the mining area

Figure 2: Map of Interim Biogeographic Regionalisation of Australia (IBRA)

2.2 Soils and Landscape Systems

The survey area lies within three soil-landscape Provinces:

- 1. Officer Province (13)
- 2. Paterson-Yeneena Province (15); and
- 3. Fortescue Province (28).

These Provinces are further divided into soil-landscape zones, with the survey area located within the:

- Little Sandy Desert Zone (131);
- Rudall River Zone (151);
- Yeneena Zone (152); and
- Jigalong Plains Zone (288).

The Little Sandy Desert Zone (131) is characterised by sandplains and dunes (with some hardpan wash plains, hills and ranges) on sedimentary rocks of the north-western Officer Basin. Soils include red sandy earths with red deep sands and some red loamy earths, red shallow loams and red-brown hardpan shallow loams. Vegetation comprises Spinifex grasslands with scattered Bloodwood and some Mulga shrublands. This zone is located in the western central Arid Interior between Lake Disappointment, Jigalong and Lake Burnside.

The Rudall River Zone (151) is characterised by hills and ranges (with some calcrete plains) on gneiss and sedimentary rocks of the Rudall Complex. Soils include stony soils, red shallow loams and bare rock with red shallow sands, red loamy earths and red sandy earths. Vegetation comprises Spinifex grassland with scattered Bloodwoods and Acacias. This zone is located in the western Arid Interior between Rudall River and Well No. 24 on the Canning Stock Route.

The Yeneena Zone (152) is characterized by sandplains and dunes (with hills, ranges and some salt lakes) on sedimentary rocks of the Yeneena Basin and Gibson Sub-basin. Soils comprise red sandy earths with red deep sands and some Salt Lake soils, stony soils, red loamy earths, red shallow loams and bare rock. Vegetation includes Spinifex grassland with scattered Bloodwoods and Acacias and some salt lakes. This zone is located in the western Arid Interior from Lake Disappointment to Telfer (Tille, 2006).

The Jigalong Plains Zone (288) is characterised by alluvial plains, sandplains, hills and ranges (with floodplains and hardpan wash plains) on sedimentary rocks of the Manganese Group (with some basalt and granite). Soils include red deep sands with red/brown non-cracking clays, red loamy earths, red deep sandy and loamy duplexes, stony soils and red shallow loams. Vegetation comprises Mulga woodlands/shrublands with spinifex and tussock grasslands. This zone is located in the eastern Pilbara between Jigalong, Ethel Creek and Balfour Downs (Tille, 2006).

These zones are further divided into soil landscape systems of the Rudall River Zone and Yeneena Zone within the survey area are shown in Table 1 and Figure 3 (ASRIS, 2014).

Table 1: Soil Landscape Systems within the Lake Disappointment Potash Project survey area

Province	Soil Landscape Zone	Landscape System/ Mapping Unit	Description
		Balfour System	Shale, gravel and clay plains supporting eremophila-cassia shrublands, tussock grasslands, and halophytic shrublands.
		Divide System	Gently undulating sandplains with minor dunes, supporting hard spinifex hummock grasslands with numerous shrubs.
Fortescue	Jigalong Plains	Robertson System	Hills and ranges of sedimentary rocks supporting hard spinifex grasslands.
		Spearhole System	Gently undulating gravelly hardpan plains and dissected slopes supporting groved mulga shrublands and hard spinifex.
		Zebra System	Hardpan plains with large linear gravelly sand banks supporting acacia tall shrublands with soft and hard spinifex.
		AB44	Plains with a variable, but usually high, proportion of longitudinal sand dunes, and with some clay pans; scattered sandstone hills and laterite residuals are fairly common
Officer	Little Sandy Desert	BA17	Flat-topped but sometimes steep-sided hills with extensive areas of bare rock-sandstones and other sedimentary rocks, but including some volcanics
Officer		Balfour System	Shale, gravel and clay plains supporting eremophila-cassia shrublands, tussock grasslands, and halophytic shrublands.
		Buckshot System	Gravelly sandplains and occasional sand dunes supporting shrubby hard spinifex grasslands.
		Little Sandy System	Sandplains with linear and reticulate dunes supporting shrubby hard and soft spinifex grasslands.
		Fa31	Rugged ranges with extensive areas of bare rock largely on metamorphics and granites but with some inclusions of sandstones and conglomerates
Paterson- Yeneena	Rudall River	Fa32	Low ranges and hills largely on metamorphics and granites but with some inclusions of sandstones and conglomerates; extensive areas of bare rock; transgressed by dunes in places and flanked by small plains
	Yeneena 152	AB44	Plains with a variable, but usually high, proportion of longitudinal sand dunes, and with some clay pans; scattered sandstone hills and laterite residuals are fairly common
		SV9	Salt lakes, salt pans, and clay pans mostly devoid of true soils

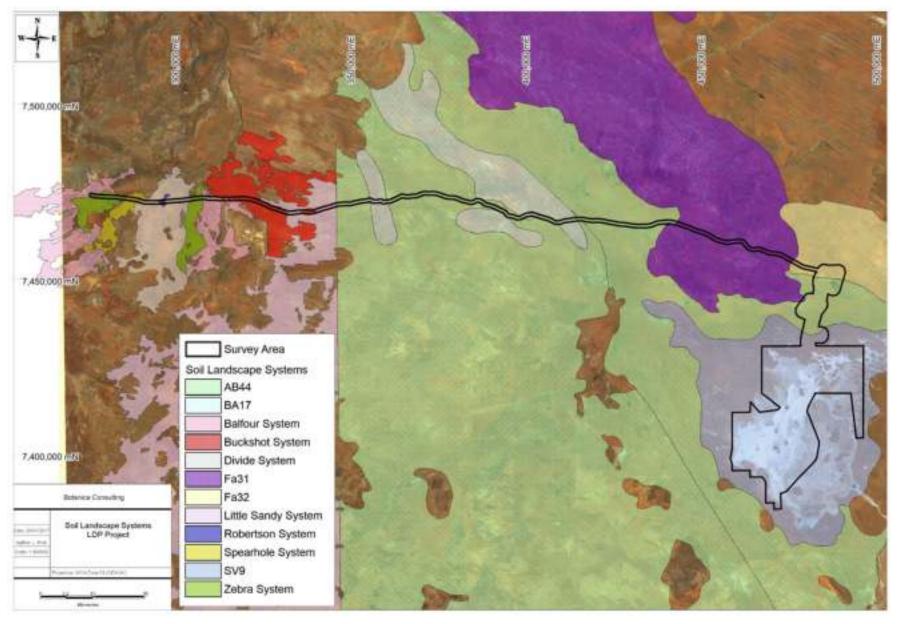


Figure 3: Map of Soil Landscape Systems within the Lake Disappointment Potash Project survey area

2.3 Remnant Vegetation

The DAFWA GIS file (2011) indicates that the survey area is located within Pre-European Beard vegetation associations Abydos Plain – Chichester 18, 29 & 111 in the Chichester (PIL1) subregion, Fortescue Valley 29 in the Fortescue (PIL2) subregion, Little Sandy Desert 99, 152 and 158 in the Rudall (LSD1) subregion, and Little Sandy Desert 99, 117, 125, 134, 158 & 194 in the Trainor (LSD2) subregion (Figure 4). The extent of these vegetation associations as specified in the 2015 Statewide Vegetation Statistics (DPaW, 2015) is provided in Table 2.

Areas retaining less than 30% of their pre-European vegetation extent may experience exponentially accelerated species loss, while areas with less than 10% are considered "endangered" (EPA, 2000). All of the vegetation types present in the areas intersected by the LDP Project development envelope are estimated to remain at 99% or more of their estimated pre-European extent. The development of the LDP Project will not significantly reduce the extent of pre-European vegetation associations.

Table 2: Remaining Beard Vegetation Associations within Western Australia (DPaW, 2015)

IBRA subregion	Vegetation association	Pre-European Extent (Ha)	Current Extent (Ha)	Pre-European extent remaining (%)	% of Current extent within DPaW managed lands	Vegetation Description (Beard, 1990)
	Abydos Plain – Chichester 18***	28,665.23	28,665.23	100.00	0.00	Low woodland; Mulga
PIL1	Abydos Plain – Chichester 29***	58,426.56	58,426.56	100.00	0.00	Sparse low woodland; Mulga, discontinuous in scattered groups
	Abydos Plain – Chichester 111**	80,894.59	80,894.59	100.00	0.00	Hummock grasslands, shrub steppe; Eucalyptus gamophylla over hard spinifex
PIL2	Fortescue Valley 29*	872,485.65	872,316.44	99.98	9.6	Sparse low woodland; Mulga, discontinuous in scattered groups
	Little Sandy Desert 99*	398,672.56	398,672.56	100.00	35.71	Hummock grasslands, shrub steppe; Acacia coriacea & Hakea over hard spinifex Triodia basedowii
LSD1	Little Sandy Desert 152**	52,919.05	52,919.05	100.00	0.00	Hummock grasslands, grass steppe; soft & hard spinifex soft spinifex
	Little Sandy Desert 158	178,188.03	178,188.03	100.00	79.58	Hummock grasslands, shrub steppe; kanji over <i>Triodia basedowii</i>
	Little Sandy Desert 99***	65,175.27	65,175.27	100.00	0.00	Hummock grasslands, shrub steppe; Acacia coriacea & Hakea over hard spinifex Triodia basedowii
	Little Sandy Desert 117*	95,838.81	95,838.81	100.00	21.09	Hummock grasslands, grass steppe; soft spinifex
LSD2	Little Sandy Desert 125**	225,060.80	225,060.80	100.00	0.00	Bare areas; salt lakes
	Little Sandy Desert 134**	7,363,935.12	7,363,935.12	100.00	1.64	Mosaic: Hummock grasslands, open low tree steppe; desert bloodwood and feathertop spinifex (on) sandhills / Hummock grasslands, shrub steppe; mixed shrubs over spinifex between sandhills

Lake Disappointment Project Level 2 Flora & Vegetation Survey

IBRA subregion	Vegetation association	Pre-European Extent (Ha)	Current Extent (Ha)	Pre-European extent remaining (%)	% of Current extent within DPaW managed lands	Vegetation Description (Beard, 1990)
	Little Sandy Desert 158***	49,274.47	49,274.47	100.00	2.03	Hummock grasslands, shrub steppe; kanji over <i>Triodia basedowii</i>
	Little Sandy Desert 194***	59,063.95	59,063.95	100.00	0.00	Hummock grasslands, tree steppe; desert oak & hard spinifex between sandhills

^{*}Low Reservation Priority according to the International Union for Conservation of Nature (IUCN)

^{**}Medium Reservation Priority according the IUCN

^{***}High Reservation Priority according the IUCN

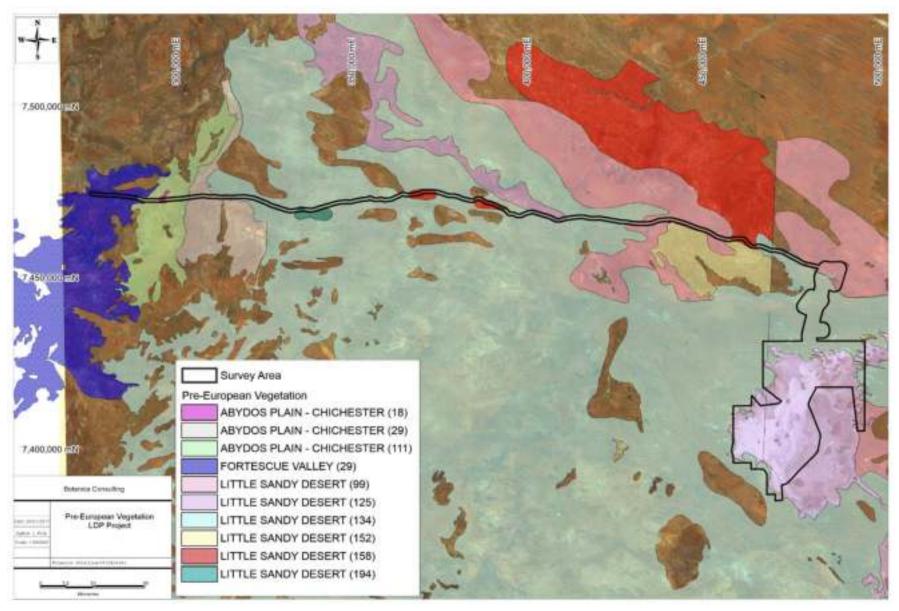


Figure 4: Pre-European Vegetation Associations within the Lake Disappointment Potash Project survey area

2.4 Climate

The climate of both the Rudall and Trainor subregions is characterised as arid with summer rainfall in the Rudall subregion and episodic summer rainfall in the Trainor subregion (Kendrick, 2001) Rainfall data for the Telfer Aero weather station (#13030) obtained from the Bureau of Meteorology (BoM) located approximately 133 km north-west of the LDP Project is provided in Figure 5 (BoM, 2017a). Annual rainfall for 2013 (first year of survey) was above average (363mm) recording a total of 603mm. Rainfall was highest in January and February. In 2016 (second year of survey) rainfall was below average (192mm). In January and February 2017 (prior to third year of survey), rainfall levels exceeded the annual average, recording 494.8mm (Figure 6). The survey area has an annual pan evaporation rate of approximately 3600-4000mm and an average annual evapotranspiration rate of 300mm (Figure 7).

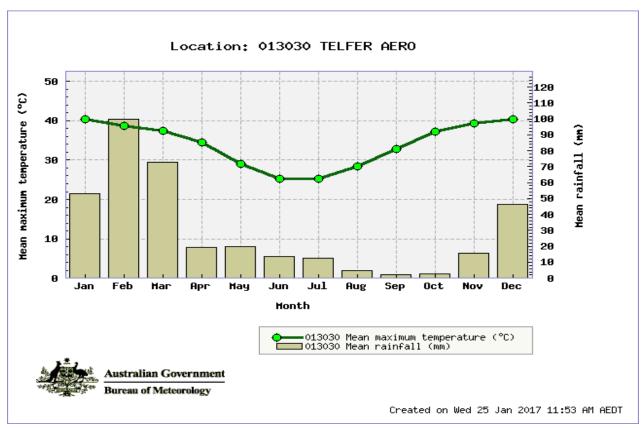


Figure 5: Mean monthly rainfall and maximum temperature (January 1974 to January 2017) for the Telfer Aero weather station (#13030) (BoM, 2017a)

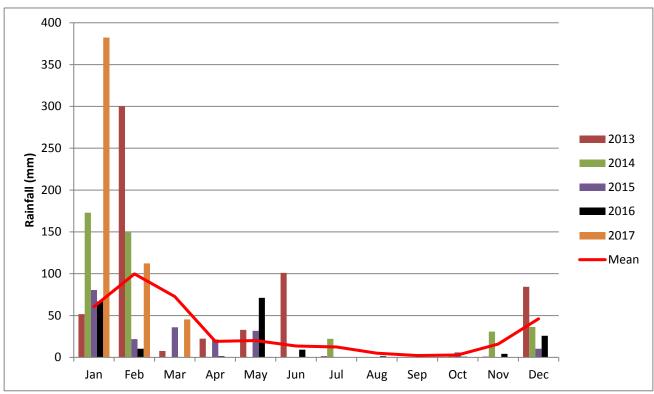


Figure 6: Monthly rainfall and mean monthly rainfall (January 2013 to March 2017) for the Telfer Aero weather station (#13030) (BoM, 2017a)

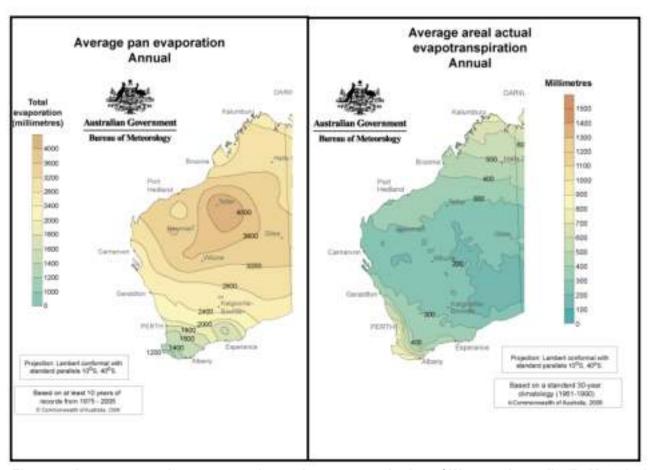


Figure 7: Average annual pan evaporation and evapotranspiration of Western Australia (BoM, 2017a)

2.5 Hydrology

The southern extremity of the survey area occurs within Lake Disappointment (often referred to as the Savory Creek system) which is described as a mega scale irregular sumpland with numerous microscale to macroscale islands. The Lake Disappointment playa is a major feature of the Little Sandy Desert bioregion. Savory Creek is an extensive creek over 280 km long and approximately 150m wide at its maximum, occasionally flooding to 2 km width. It is one of only two significant drainage systems that flow into the Little Sandy Desert. Savory Creek originates in the Bangemall Basin, flows across the Savory Basin and into Lake Disappointment (Lynch, 1995).

Lake Disappointment lies at the lowest point of the Little Sandy Desert. The lake bed consists of poorly consolidated saline lacustrine sediments (clay, silt, sand and gypsum). The surrounding area is composed of mixed aeolian-lacustrine silt, sand and kopi forming longitudinal dunes trending eastwest, interspersed with minor salt lakes and claypans (Lynch, 1995).

Savory Creek enters Lake Disappointment from the north-west, but flow is impeded by a substantial sand bar to form a large permanent pool upstream of the point at which the tributary discharges to the playa. The lake is also fed by smaller ephemeral creeks and direct precipitation (Lynch, 1995).

The margins of Lake Disappointment and lower reaches of Savory Creek support samphire communities, but there are no vascular plants on the salt-encrusted lake bed. Principle species on islands and dunes surrounding the lake are spinifex *Triodia schinzii* and *Triodia pungens* with scattered shrubs, mainly Acacia and Grevillea. The eastern side of the lake is characterised by scattered shrubs of *Acacia coriacea* and Hakea over an open-hummock grassland of another Spinifex *Triodia basedowii*. There are large areas of Desert Oak *Allocasuarina decaisneana* on the western side (Lynch, 1995).

According to the Geoscience Australia database (2001) there are several non-perennial/ intermittent drainage lines within the survey area, some of which drain towards Lake Disappointment (Figure 8). Drainage channels of Lake Disappointment were formed much earlier under wetter conditions and have often been obscured by sand so that mapping must depend on contours, on valley-bottom calcrete deposits, salt lakes and pans (Beard, 2005). A map showing the hydrology of the LDP Project survey area is provided in Figure 8.

According to the Department of Water (DoW) groundwater salinity database (DoW, 2016), groundwater salinities in the survey area ranges from TDS 1000-3000 mg/L (along the majority of the Talawana track, Mackay creek area) to TDS >35,000 mg/L associated with Lake Disappointment.

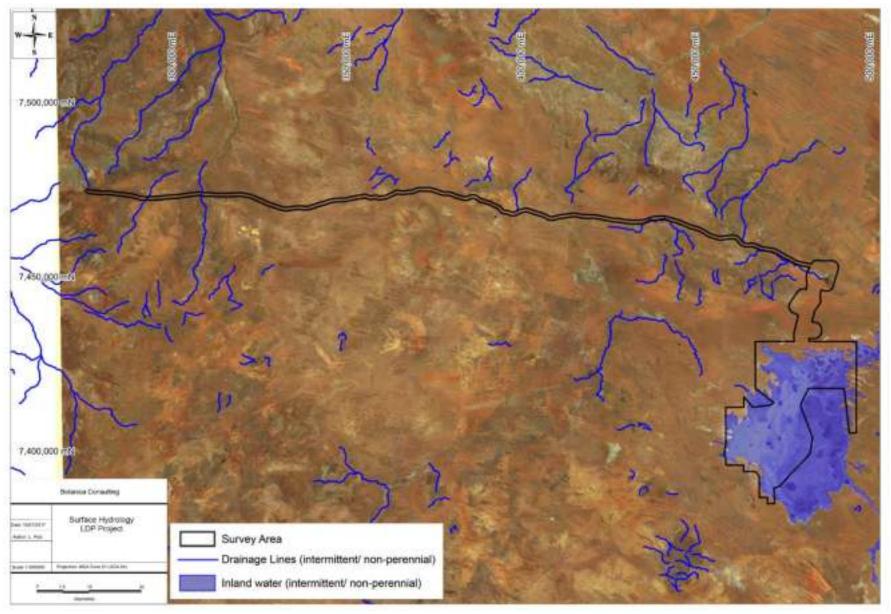


Figure 8: Surface Hydrology of the Lake Disappointment Potash Project survey area (data obtained from Geoscience Australia, 2001)

2.6 Land Use

The dominant land uses of the region include Grazing – native pastures, Aboriginal lands and Reserves, Unallocated Crown Land (UCL) & Crown Reserves, Conservation, and Mining leases (Cowan & Kendrick, 2001; Kendrick, 2001; McKenzie *et. al.*, 2002). Current land use for Lake Disappointment includes Aboriginal usage and mineral exploration.

3 Survey Methodology

3.1 Desktop Assessment

Searches of the following databases were undertaken to aid in the compilation of a list of flora within the survey area:

- DPaW Priority/ Threatened Flora Database Search (DPaW, 2012a)
- DPaW Priority/ Threatened Ecological Communities Database Search (DPaW, 2012b)
- DPaW NatureMap Database (DPaW, 2016a);
- DotEE Protected Matters search tool (DotEE, 2016a).

The NatureMap and Protected Matters searches were conducted for an area encompassing a 40 km radius of the following centre coordinates:

- 121° 11' 40" E, 22 50' 11" S
- 121° 59' 34" E, 22 53' 28" S
- 121° 47' 12" E, 23 01' 23" S
- 121° 45' 51" E, 23 25' 60" S

It should be noted that these lists are based on observations from a broader area than the survey area (40 km radius) and therefore may include taxa not present. The databases also often include very old records that may be incorrect or in some cases the taxa in question have become locally or regionally extinct. Information from these sources should therefore be taken as indicative only. Local knowledge and information also needs to be taken into consideration when determining what actual species may be present within the specific area being investigated.

Prior to the field surveys, a combined search of the DPaW Flora of Conservation Significance databases (DPaW, 2012a) was undertaken within an 80km radius of the survey area. Significant flora species identified through the database search were examined on the Western Australian Herbarium's (WAHERB) web page prior to the survey, to familiarise staff with their appearance. Locations of Threatened Flora and Priority Flora were overlaid on aerial photography of the area. Vegetation descriptions and available images of the Threatened/ Priority Flora were also obtained from Florabase.

The conservation significance of flora taxa was assessed using data from the following sources:

- EPBC Act. Administered by the Australian Government (DotEE);
- WC Act. Administered by the WA Government (DPaW)⁴;
- Red List produced by the Species Survival Commission (SSC) of the World Conservation
 Union (also known as the IUCN Red List the acronym derived from its former name of

Botanica Consulting 16

_

⁴ Biodiversity Conservation Act 2016 received assent on 21 September 2016 with Parts of the Act coming into effect on 3 December 2016. Once fully enacted with enabling subsidiary regulations, it will replace the *Wildlife Conservation Act 1950*.

the International Union for Conservation of Nature). The Red List has no legislative power in Australia but is used as a framework for State and Commonwealth categories and criteria; and

• DPaW Priority Flora list. A non-legislative list maintained by DPaW for management purposes (DPaW).

Table 3 represents the definitions of Flora of Conservation Significance ratings under the WC Act and EPBC Act.

Table 3: Definitions of Conservation Significant Flora

Code	Category				
State categories of threatened and priority species					
Т	Threatened Flora "flora that has been declared to be 'likely to become extinct or is rare, or otherwise in need of special protection', pursuant to section 23F (2) of the Wildlife Conservation Act."				
P1	Priority One – Poorly Known Taxa "Taxa which are known from one or a few (generally <5) populations which are under threat, either due to small population size, or being on lands under immediate threat. Such taxa are under consideration for declaration as 'rare flora', but are in urgent need of further survey."				
P2	Priority Two – Poorly Known Taxa "Taxa which are known from one or a few (generally <5) populations, at least some of which are not believed to be under immediate threat (i.e. not currently endangered). Such taxa are under consideration for declaration as 'rare flora', but urgently need further survey."				
P3	Priority Three – Poorly Known Taxa "Taxa which are known from several populations and the taxa are not believed to be under immediate threat (i.e. not currently endangered), either due to the number of known populations (generally >5), or known populations being large, and either widespread or protected. Such taxa are under consideration for declaration as 'rare flora' but needs further survey."				
P4	Priority Four – Rare Taxa "Taxa which are considered to have been adequately surveyed and which, whilst being rare (in Australia), are not currently threatened by any identifiable factors. These taxa require monitoring every 5 – 10 years."				
P5	Priority Five-Conservation Dependent Taxa Taxa that are not threatened but are subject to a specific conservation program, the cessation of which would result in the species becoming threatened within five years.				
Commonweal	th categories of threatened species				
Extinct	Taxa where there is no reasonable doubt that the last member of the species has died.				
Extinct in the wild	Taxa where it is known only to survive in cultivation, in captivity or as a naturalised population well outside its past range; or it has not been recorded in its known and/or expected habitat, at appropriate seasons, anywhere in its past range, despite exhaustive surveys over a time frame appropriate to its life cycle and form.				
Critically endangered	Taxa that are facing an extremely high risk of extinction in the wild in the immediate future, as determined in accordance with the prescribed criteria.				
Endangered	Taxa which are not critically endangered and is facing a very high risk of extinction in the wild in the near future, as determined in accordance with the prescribed criteria.				

Code	Category
Vulnerable	Taxa which are not critically endangered or endangered and is facing a high risk of extinction in the wild in the medium-term future, as determined in accordance with the prescribed criteria.
Conservation dependent	Taxa which are the focus of a specific conservation program the cessation of which would result in the species becoming vulnerable, endangered or critically endangered; or (b) the following subparagraphs are satisfied: (i) the species is a species of fish; (ii) the species is the focus of a plan of management that provides for actions necessary to stop the decline of, and support the recovery of, the species so that its chances of long term survival in nature are maximised; (iii) the plan of management is in force under a law of the Commonwealth or of a State or Territory; (iv) cessation of the plan of management would adversely affect the conservation status of the species.

Conservation significant flora identified during the database searches were assessed and ranked for their likelihood of occurrence within the survey area. The rankings and criteria used were:

- Unlikely: Area is outside of the currently documented distribution for the species and /or no suitable habitat (type, quality and extent) was identified as being present during the field/desktop assessment.
- Possible: Area is within the known distribution of the species in question and habitat of at least marginal quality was identified as being present during the field/desktop assessment, supported in some cases by recent records being documented from within or near the area.
- Known to Occur: The species in question was positively identified as being present during the field survey.

A search of the DPaW PEC and TEC database was also conducted within a 40km radius of the survey area (DPaW, 2012b). Table 4 represents the definitions of Threatened and Priority Ecological Communities.

Table 4: Definitions of conservation significant communities

Category Code	Category					
State categories	State categories of Threatened Ecological Communities (TEC)					
	Presumed Totally Destroyed					
PTD	An ecological community will be listed as Presumed Totally Destroyed if there are no recent records of the community being extant and either of the following applies:					
FID	records within the last 50 years have not been confirmed despite thorough searches or known likely habitats or;					
	all occurrences recorded within the last 50 years have since been destroyed.					
	Critically Endangered					
CE	An ecological community will be listed as Critically Endangered when it has been adequately surveyed and is found to be facing an extremely high risk of total destruction in the immediate future, meeting any one of the following criteria:					

Catagory Codo	Cotogony
Category Code	Category
	The estimated geographic range and distribution has been reduced by at least 90% and is either continuing to decline with total destruction imminent, or is unlikely to be substantially rehabilitated in the immediate future due to modification;
	The current distribution is limited i.e. highly restricted, having very few small or isolated occurrences, or covering a small area;
	The ecological community is highly modified with potential of being rehabilitated in the immediate future.
	Endangered An ecological community will be listed as Endangered when it has been adequately surveyed and is not Critically Endangered but is facing a very high risk of total destruction in the near future. The ecological community must meet any one of the
E	following criteria: The estimated geographic range and distribution has been reduced by at least 70% and is either continuing to decline with total destruction imminent in the short term future, or is unlikely to be substantially rehabilitated in the short term future due to modification; The current distribution is limited i.e. highly restricted, having very few small or isolated occurrences, or covering a small area;
	The ecological community is highly modified with potential of being rehabilitated in the short term future.
	Vulnerable An ecological community will be listed as Vulnerable when it has been adequately surveyed and is not Critically Endangered or Endangered but is facing high risk of total destruction in the medium to long term future. The ecological community must meet any one of the following criteria:
V	The ecological community exists largely as modified occurrences that are likely to be able to be substantially restored or rehabilitated;
	The ecological community may already be modified and would be vulnerable to threatening process, and restricted in range or distribution;
	The ecological community may be widespread but has potential to move to a higher threat category due to existing or impending threatening processes.
Commonwealth	categories of Threatened Ecological Communities (TEC)
CE	Critically Endangered If, at that time, an ecological community is facing an extremely high risk of extinction in the wild in the immediate future (indicative timeframe being the next 10 years).
E	Endangered If, at that time, an ecological community is not critically endangered but is facing a very high risk of extinction in the wild in the near future (indicative timeframe being the next 20 years).
V	Vulnerable If, at that time, an ecological community is not critically endangered or endangered, but is facing a high risk of extinction in the wild in the medium–term future (indicative timeframe being the next 50 years).

Category Code	Category			
Priority Ecological Communities (PEC)				
	Poorly-known ecological communities			
P1	Ecological communities with apparently few, small occurrences, all or most not actively managed for conservation (e.g. within agricultural or pastoral lands, urban areas, active mineral leases) and for which current threats exist.			
	Poorly-known ecological communities			
P2	Communities that are known from few small occurrences, all or most of which are actively managed for conservation (e.g. within national parks, conservation parks, nature reserves, State forest, un-allocated Crown land, water reserves, etc.) and not under imminent threat of destruction or degradation.			
P3	Poorly known ecological communities			
	Communities that are known from several to many occurrences, a significant number or area of which are not under threat of habitat destruction or degradation or: Communities known from a few widespread occurrences, which are either large or within significant remaining areas of habitat in which other occurrences may occur, much of it not under imminent threat, or;			
	Communities made up of large, and/or widespread occurrences, that may or not be represented in the reserve system, but are under threat of modification across much of their range from processes such as grazing and inappropriate fire regimes.			
P4	Ecological communities that are adequately known, rare but not threatened or meet criteria for near threatened, or that have been recently removed from the threatened list. These communities require regular monitoring.			
	Conservation Dependent ecological communities			
P5	Ecological communities that are not threatened but are subject to a specific conservation program, the cessation of which would result in the community becoming threatened within five years.			

3.2 Field Assessment

The flora survey was initially conducted in autumn from the 20th to the 25th April 2013, covering an area of 89,130 ha (of which 60,886 ha was covered by Lake Disappointment). Forty-three quadrats (50m X 50m) were established during the initial survey. These quadrats were revisited in spring from the 17th October to the 19th October 2013. Additional surveys were conducted in September and December 2016, covering an area of approximately 134,800 ha of which 70,567 ha was covered by Lake Disappointment. The 43 quadrats established in 2013 were re-visited in September 2016 and an additional 74 quadrats were established. The additional surveys included surveying of the Talawana track (surveyed to a width of 1 km X 220 km length) and a minimum 2 km buffer around the proposed disturbance footprint for the LDP Project (including proposed borefields and area of potential groundwater drawdown). A total of 117 quadrats were established within the final survey area. All 117 quadrats were revisited in autumn (post wet season) from the 6th to the 10th March 2017.

Prior to the commencement of field work, aerial photography was inspected and obvious differences in the vegetation assemblages were identified. The different vegetation communities identified were then inspected during the field survey to assess their validity. A handheld GPS unit was used to record the coordinates of the boundaries between vegetation communities. At each sample point, the following information was recorded:

- GPS location;
- Photograph of vegetation;
- Dominant taxa for each stratum;
- All vascular taxa (including annual taxa);
- Landform classification;
- Vegetation condition rating;
- Collection and documentation of unknown plant specimens; and
- GPS location, photograph and collection of flora of conservation significance if encountered.

Unknown specimens collected during the survey were identified with the aid of samples housed at the BC Herbarium and WAHERB. Vegetation types were classified in accordance with the NVIS Vegetation Type (Level V) classification. Presence/absence data of taxa from sample sites were used to compile the representative floristic groups. The survey area was traversed by five people via 4WD, all-terrain vehicle, hovercraft, helicopter and on foot (Figure 9).

The LDP Project occurs within aboriginal land owned by the Martu People. Martu holds native title rights and interests to Martu country, including the right to control access. BC staff completed an induction for access to Martu country and have complied with the requirements outlined by the Martu people when accessing their land. This includes a number of exclusion zones which must be adhered to, such as being within 100m of any of the islands in Lake Disappointment. Exclusion areas may not be accessed even for the purpose of scientific surveys. The Martu People have been consulted regularly throughout the LDP Project, and BC obtained permission from the Martu People to access the survey area (excluding heritage exclusion zones).



Figure 9: Quadrat locations, survey area boundary and GPS tracks traversed throughout the Lake Disappointment Potash Project survey area

3.2.1 Sampling Quadrats

One hundred and seventeen $50m \times 50m$ quadrats were established within the survey area (Figure 9). The objective was to have at least three quadrats per vegetation type to capture the floristic variations within the survey area. Where a community was insufficiently large to accommodate three quadrats, the maximum number of quadrats that would fit within that specific community was established. The quadrats were established by inserting metal pickets in each corner, and measuring the length of the resultant boundaries to verify the quadrats were $50m \times 50m$ (square quadrats).

Following their establishment and boundary verification, the location of each quadrat was recorded by GPS (Appendix 4) photographed (Appendix 7) and all vascular plants within the quadrat were recorded (Appendix 6). This included recording of dominant taxa from the upper, middle and lower stratum, and sampling of all unknown taxa. Unknown taxa were identified using BC's own reference herbarium and relevant taxonomical keys or by a taxonomic consultant. Data on level of disturbance, presence of coarse fragments on surface, topographical position, elevation, aspect, percentage litter, percentage bare ground, percentage surface rock (bedrock and surface deposits), soil types (colour, profile, field texture and surface type), and vegetation structure were collected from each quadrat (Appendix 6). Methods of recording data from these quadrats largely follow those outlined in CSIRO's Australian Soil and Land Survey Field Handbook (McDonald et al. 1998) and in accordance with current DPaW/EPA Guidelines (2016).

3.2.2 Targeted Survey

In April 2013, BC established eighteen monitoring sites within riparian vegetation along the lake perimeter (avoiding Aboriginal Heritage exclusion zones)⁵. The objective of the monitoring programme was to assess the biodiversity and health of native riparian vegetation of Lake Disappointment. These sites have been assessed annually over a four-year period (from 2013 to 2016). Figure 11 provides a map of the monitoring site locations. The location of these sites was selected dependent on accessibility and vegetation present (i.e. Samphire). A R44 helicopter was used to access the monitoring sites as accessibility around the lake was poor due to the remoteness of the location and lack of access tracks. GPS coordinates for each transect are provided in Appendix 5.

At each site the following was established;

- 1. One 100m transect parallel to the shoreline;
- 2. One perpendicular transect of varied distance dependent on continuation of riparian vegetation perpendicular to the shoreline; and
- 3. One 100m² quadrat.

Each parallel and perpendicular transect was paired sharing a mutual starting point permanently marked with a fence dropper. The 100m² quadrat was bound by the pairs of parallel and perpendicular transects at their mutual starting point. An example of the monitoring site layout is provided in Figure 10.

Botanica Consulting 23

⁵ The monitoring program was established in consultation with EPA and DEC as specified in the *Stage 2 LDP Project Environmental Impact Assessment and Monitoring Plan* (BC, 2013), assessed by EPA and DEC.

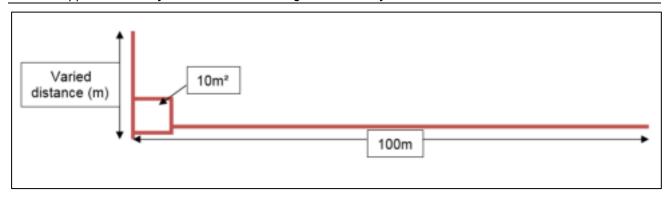


Figure 10: Diagram of riparian monitoring site layout

At each site the following parameters were measured:

- Identification of all species within the quadrat and along parallel/perpendicular transect
- No. plants of each species within the quadrat and along parallel/perpendicular transect
- % Cover of each species within the quadrat and along parallel/perpendicular transect
- Health Condition rated on a 1 to 5 scale, adapted from the Keighery (1994) health rating scale:
 - 1- Dead/no live vegetation
 - 2- Poor/Declining vegetation health
 - 3- Good/Improving vegetation health
 - 4- Very Good vegetation health/no change from previous monitoring if relevant
 - 5- Excellent health, new germinants

Findings of the riparian monitoring were included in total species list (Appendix 3) and records of flora of conservation significance (Appendix 4).

In addition to the riparian monitoring program, opportunistic records of flora of conservation significance were taken and targeted searches for flora of conservation significance were conducted

within samphire vegetation.

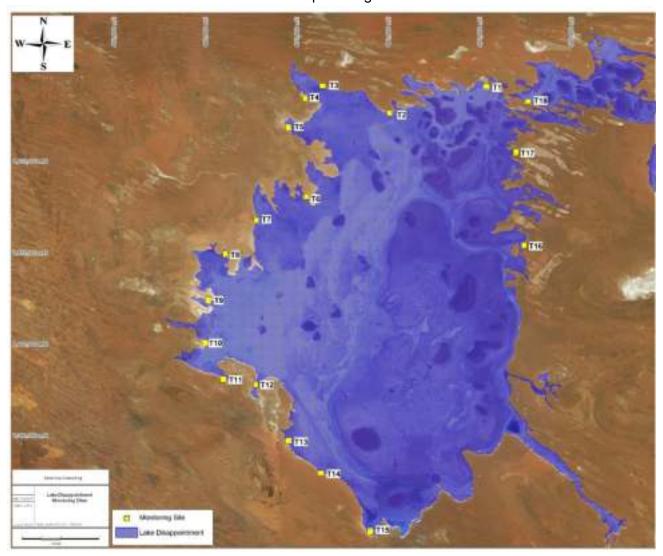


Figure 11: Riparian Vegetation Monitoring Program

3.2.3 Personnel involved

Jim Williams - Environmental Consultant/ Director (Diploma of Horticulture)

Andrea Williams - Environmental Consultant/ Director (BSc Hons Minerals Resources

Management)

Lauren Pick - Environmental Consultant (BSc Zoology & Conservation Biology)

Samantha Stapleton - Environmental Consultant (BSc Ecology & Conservation Biology Hons)

Aidan Williams - Environmental Technician (Undergraduate Environmental Science)

Frank Obbens - Taxonomic Consultant

Mike Hislop - WA Herbarium Taxonomic Consultant

Kelly Shepherd - WA Herbarium Taxonomic Consultant (*Tecticornia* specialist)

3.2.4 Scientific licences

Table 5: Scientific Licences of Botanica Staff coordinating the survey

Licensed staff	Permit Number	Valid Until
Jim Williams	SL010574	21-05-2014

Licensed staff	Permit Number	Valid Until
	SL011001	21-05-2015
	SL011451	21-05-2016
	SL011826	21-05-2017
	SL010573	21-05-2014
Lauren Pick	SL011000	21-05-2015
Lauren Fick	SL011452	21-05-2016
	SL011825	21-05-2017
	SL011002	21-05-2015
Andrea Williams	SL011450	21-05-2016
	SL011824	21-05-2017
Samantha Stapleton	SL010575	21-05-2014

3.3 Data Analysis Tools

Once the survey was completed the data obtained was analysed to generate a vegetation map (Appendix 2). The statistical program PATN was used to assess species composition of the quadrats (Appendix 8).

3.3.1 PATN Analysis

The PATN software package was used to assess the similarities/ dissimilarities between quadrats based on presence/ absence of species. Annual taxa were removed from the data prior to analysis (total of 68 annual taxa). Species reconciliation eliminated those sterile taxa that could not be fully identified from the analysis (six taxa), and reconciled subsp. and/or variant taxa. Singleton taxa were excluded from the analysis (57 taxa). One quadrat (Q74) was excluded from the analysis as it represented an interzone between the dunefield and lake edge.

The analysis produced a quantitative estimate of the relationship between species composition of each quadrat. The classifications were based upon a Bray-Curtis association matrix using a flexible Unweighted Pair Group Arithmetic Mean (UPGMA) method (with a beta value of -0.1) which standardises the data enabling the analysis to be completed. Semi-strong hybrid (SSH) ordination of the quadrat is then undertaken to show spatial relationships between groups and to elucidate possible environmental correlates with the classification.

The analysis also produced a stress value which is a measure of the 'strength' of the analysis (i.e. how well the quadrats are grouped together into the appropriate floristic groups). The lower the stress value the greater the strength of the analysis with a value of less than 0.3 showing that the analysis appropriately grouped quadrats. A stress value greater than 0.3 suggests that the analysis was unable to group quadrats appropriately due to extraneous variables (i.e. other factors influencing differences in floristic groups other than species composition e.g. fire, clearing disturbance etc.).

3.3.2 EstimateS

EstimateS software was used to estimate species richness present using the Chao2 richness estimator. For any number of samples, the estimator uses the existing pattern of species accumulation to estimate the true number of species at a site. The estimators tend to under-estimate species number when sample size is small, hence the estimated number of true species can be seen to increase with sample size. This software was also used to compute Coleman rarefaction curves estimates which were used to calculate species accumulation curves.

3.4 Flora survey limitations and constraints

It is important to note that flora surveys will entail limitations notwithstanding careful planning and design. Potential limitations are listed in Table 6.

Table 6: Limitations and constraints associated with the flora and vegetation survey

Variable	Potential Impact on Survey	Details
Access problems	Minor constraint	The survey was conducted via 4WD, all-terrain vehicle and on foot. Majority of the survey was located within a dunefield which limited mobility. However, where possible BC staff accessed majority of the areas using cleared access tracks and on foot. Access around the lake was difficult and restricted to use of a R44 and R22 helicopter. Heritage exclusion zones prevented survey of the full boundary of Lake Disappointment (i.e. south-eastern region of Lake Disappointment located within exclusion zone). Islands within the playa were not able to be accessed due to heritage exclusion requirements.
Competency/ Experience	Not a constraint	The BC personnel that conducted the survey were regarded as suitably qualified and experienced. Coordinating Botanist: Jim Williams Field Staff: Jim Williams, Andrea Williams, Lauren Pick, Samantha Stapleton & Aidan Williams Data Interpretation: Jim Williams, Andrea Williams, Lauren Pick & Samantha Stapleton
Timing of survey, weather & season	Not a constraint	Following consultation with the EPA, initial survey work was planned to take place within 6-8 weeks of any high summer (cyclonic) rainfall. Such rainfall was received in February 2013 with the initial survey conducted in April 2013. In accordance with the Technical Guidelines for Level 2 surveys, the quadrats were re-surveyed in Spring during optimum flowering period for most taxa (October 2013) and post-wet season. Following extension of the survey area, additional surveys were conducted in September 2016 and December 2016 (during dry season). All 117 quadrats were revisited in March following the summer wet season. Rainfall data has shown that rainfall recorded in January-February 2017 exceeds mean annual.
Area disturbance	Minor constraint	The survey area has been subject to disturbance from camels and fire. Minimal human activities have occurred within the area.
Survey Effort/ Extent	Not a constraint	Survey intensity was high with a Level 2 quadrat based survey conducted over four survey periods and different seasons. Prior to the quadrats being established a reconnaissance of the survey area was conducted in order to identify vegetation communities and any Flora of Conservation Significance.
Availability of contextual information at a regional and local scale	Minor constraint	Threatened flora database search provided by the DPaW was used to identify any potential locations of Threatened/Priority Flora species. BOM, DoW, DAFWA, DPaW and DotEE databases were reviewed to obtain appropriate regional desktop information on the biophysical environment of the local region. Environmental assessments within the local region have been limited however BC was able to obtain information about the

Variable	Potential Impact on Survey	Details
		area from previous desktop assessments conducted within the area and reconnaissance surveys conducted by BC which provided context on the local environment.
Data Analysis	Minor constraint	BC staff conducting the PATN statistical analyses are not statistical analysts and have basic statistics training. These analyses are used to provide basic information on the relationships between vegetation communities delineated in the field.
Completeness	Not a constraint	In the opinion of BC, the survey area was covered sufficiently in order to identify vegetation assemblages. Survey work was conducted in multiple seasons (Autumn, Spring and Summer) across multiple years (2013,2016 and 2017). Many of the plants during the survey were in flower and annual species were present. It is estimated that approximately 95% of the flora within the survey area were able to be fully identified. The vegetation types for this study were based on visual descriptions of locations in the field. The distribution of these vegetation types outside the study area is not known, however vegetation communities identified were categorised via comparison to vegetation distributions throughout WA specified in the NVIS Major Vegetation Groups (DotEE, 2016b).

4 Results

4.1 Desktop Assessment

4.1.1 Literature Review

Flora and vegetation surveys, assessments and reviews have been undertaken in nearby areas in the past, though not all are publicly available and some could not be referenced. The most significant of those available have been used as the primary reference material for the current vegetation assessment (Table 7).

Table 7: Previous Flora and Vegetation Surveys within the Lake Disappointment Potash Project and surrounding area

Author & Year	Vegetation/Landforms	Flora of Conservation Significance
Department of Agriculture and Food WA, 2004	Within the entire Pilbara survey eleven broad site types were identified: 1. Hill hummock grassland; 2. Hill sclerophyll shrubland; 3. Upland plain tussock grassland; 4. Plan tussock grassland; 5. Stony plain and low rise sclerophyll shrubland; 6. Sheet flood hard plain sclerophyll shrubland or woodland; 7. Sandplain and dune grassland; 8. Alluvial plain hummock grassland; 9. Alluvial plain tussock grassland; 10. Alluvial plain halophytic shrubland; and 11. Drainage shrubland and woodland.	N/A
Actis Environmental and Alexander Holm & Associates, 2009	The dominant vegetation is hummock grassland of feathertop spinifex (<i>Triodia schinzii</i>) with scattered desert bloodwood (<i>Corymbia dichromophloia</i>) and mixed shrubs. Saline plains support Samphire (<i>Tecticornia</i> spp.) succulent steepe with tea tree (<i>Melaleuca</i> spp.) scrub surrounding the mostly bare Salt Lake.	N/A
Botanica Consulting, 2012	Twelve vegetation communities including a variety of Acacia scrubs, Corymbia woodlands, Eucalypt woodlands, Shrub Mallee, mixed scrub/herbs and Samphire heath.	

4.1.2 Flora of Conservation Significance

The results of the combined search of the DPaW's Flora of Conservation Significance databases and DotEE protected matters search recorded a total of thirteen Priority Flora taxa within the local region. These taxa were assessed and ranked for their likelihood of occurrence within the survey area (Table 8).

Table 8: Likelihood of occurrence for Flora of Conservation Significance within the survey area

Taxon	Conservation Code	Description (WAHERB, 2017)	Likelihood of Occurrence
Euphorbia parvicaruncula	P1	Short-lived annual or perennial, herb, to 0.2 m high.	Possible
Hibiscus sp. Durba Hills (R. Davis 11193)	P1	No description available	Unlikely
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867)	P1	No description available	Known to occur
Acacia auripila	P2	Tree, to 3 m high, bark grey & fissured. Fl. yellow, Aug. Rocky quartz soils. Hillsides, gullies.	Possible
Eremophila sp. Rudall River (P.G. Wilson 10512)	P2	No description available	Possible
Thysanotus sp. Desert East of Newman (R.P. Hart 964)	P2	Self-supporting perennial, herb (with tuberous roots), distinguished by the long, equal anthers and pseudo-cymose branching. Fl. Aug to Oct. Red-brown loamy sand or red sand, sometimes silty. Sand plain, pisolitic buckshot plain.	Possible
Acacia sp. Broome (B.R. Maslin 4918)	P3	Open shrub, (0.7-)1.5-4 m high. Fl. Apr to Jun. Rocky clay, red sand. Coastal cliffs, low-lying areas.	Possible
Dampiera atriplicina	P3	Spreading, robust shrub, to 0.5(-1.2) m high. Fl. pink, May or Jul. Red sand. Sand ridges.	Possible
Eragrostis lanicaulis	P3	Knotty or bulbous rhizomatous, perennial, grass- like or herb, 0.45-0.5 m high. Fl. Mar to May or Aug to Oct. Red sandy clay. Flats.	Possible
Goodenia purpurascens	P3	Erect perennial or annual, herb, 0.1-0.3 m high. Fl. blue-purple/white/yellow, Jan or Apr or Jun or Sep or Dec. Clay, mud. Swamps & seasonally wet depressions.	Possible
Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	Open, erect annual or biennial, herb, to 0.2 m high. Fl. yellow. Red-brown clay soil, calcrete pebbles. Low undulating plain, swampy plains.	Possible
Sauropus arenosus	P3	Spreading shrub, 0.5-1 m high. Fl. yellow- green/red-pink, May. Red sand dunes.	Possible
<i>Triodia</i> sp. Mt Ella (M.E. Trudgen 12739)	P3	Perennial, grass-like or herb, 0.4 m high. Light orange-brown, pebbly loam. Amongst rocks & outcrops, gully slopes.	Possible

4.1.3 Field Assessment

4.2 Flora of conservation significance

Flora of conservation significance identified in the desktop assessment as potentially occurring within the survey area were targeted during the field assessment. No Threatened Flora taxa pursuant to subsection (2) of section 23F of the WC Act and the EPBC Act were identified within the survey area. One Priority Flora taxon; *Tecticornia* sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1) as listed by DPaW was identified within the survey area. Two unrecognised taxa of *Tecticornia* (as identified by K.A Shepherd 867) (*Tecticornia* sp. nov A and *Tecticornia* sp. nov B) were also identified in the survey area. These are considered to be of Conservation Significance. A third *Tecticornia* specimen; *Tecticornia* aff. *calyptrata* is also provisionally considered to be of Conservation Significance, as it is presently undergoing further taxonomical work by the WAHERB to confirm if it is a distinct taxon. A map showing the locations of these flora taxa identified within the survey area is provided in Figure 12.

Locations provided by DPaW for *Dampiera atriplicina* and *Acacia* sp. Broome (B.R. Maslin 4918) were visited during the survey, however no plants matching the description were identified. The *Hibiscus* sp. Durba Hills (R. Davis 11193) location was also visited, however the plant, which is only known from one location, was found approximately 5 km from Durba Hills. No plants matching the description were found in Durba Hills.

4.2.1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1)

No description is available for this taxon (WAHERB, 2017). One DPaW known location of this taxon was confirmed within the survey area. BC identified an additional 169 locations of this taxon within the Heath of mixed *Tecticornia* spp. on Salt Lake edge community. Specimens of this plant were identified by taxonomic specialist Mike Hislop of the WAHERB, and later confirmed by *Tecticornia* specialist Kelly Shepherd. Locations of this taxon have been lodged with WAHERB on the 2nd May 2015. An estimated 46,445 plants of this taxa were identified during the survey. GPS locations are provided in Appendix 4. This taxon is not endemic to the area and is distributed within the Murchison and Little Sandy Desert Region.

Plate 1: Tecticornia sp. Sunshine Lake (K.A. Shepherd et. al KS 867) (P1)

4.2.2 *Tecticornia* sp. nov. A and *Tecticornia* sp. nov. B (unrecognised taxon, K.A. Shepherd 867) CS

Two previously undescribed *Tecticornia* taxa (unrecognised taxa, K.A. Shepherd 867), were identified in the survey area; *Tecticornia* sp. nov. A (related to the 'ovate seed aggregate' in the *T. halocnemoides* complex) and *Tecticornia* sp. nov. B (related to the 'round seed aggregate' in the *T. halocnemoides* complex), both of which are considered to be of Conservation Significance. BC identified nine locations of *Tecticornia* sp. nov. A with an estimated 1741 plants recorded. Three locations (estimated 1050 plants) of *Tecticornia* sp. nov. B have also been recorded. Both taxa were identified within the Heath of mixed *Tecticornia* spp. on Salt Lake edge vegetation type. These specimens were identified by *Tecticornia* specialist Kelly Shepherd with a specimen of each taxon lodged with WAHERB on the 19th July 2013. GPS locations of these taxa identified within the survey area are provided in Appendix 4.

Plate 2: Tecticornia sp. nov. A (unrecognised taxon, K.A. Shepherd 867) (CS)

Plate 3: Tecticornia sp. nov. B (unrecognised taxon, K.A. Shepherd 867) (CS)

4.2.3 Tecticornia aff. calyptrata (potentially distinct taxon, K.A. Shepherd 867) CS

The specimen collected has been identified by taxonomic specialist Mike Hislop of the WAHERB, and later confirmed by *Tecticornia* specialist Kelly Shepherd as a potentially distinct taxon related to *Tecticornia calyptrata*, however further taxonomic work is required to confirm if it should be supported as a distinct taxon. As this specimen is a potentially distinct taxon it is provisionally considered to be of Conservation Significance. BC identified 17 locations of this taxon within the Heath of mixed *Tecticornia* spp. on Salt Lake edge vegetation community. A specimen of this taxon has been lodged with WAHERB on the 19th July 2013. A total of 758 plants of this taxon were identified during the survey. GPS locations of this taxon identified within the survey area are provided in Appendix 4.

Plate 4: Tecticornia aff. calyptrata (CS)

A summary of all flora of conservation significance recorded during the riparian monitoring (detailed in Section 3.2.2) is provided in Appendix 4.

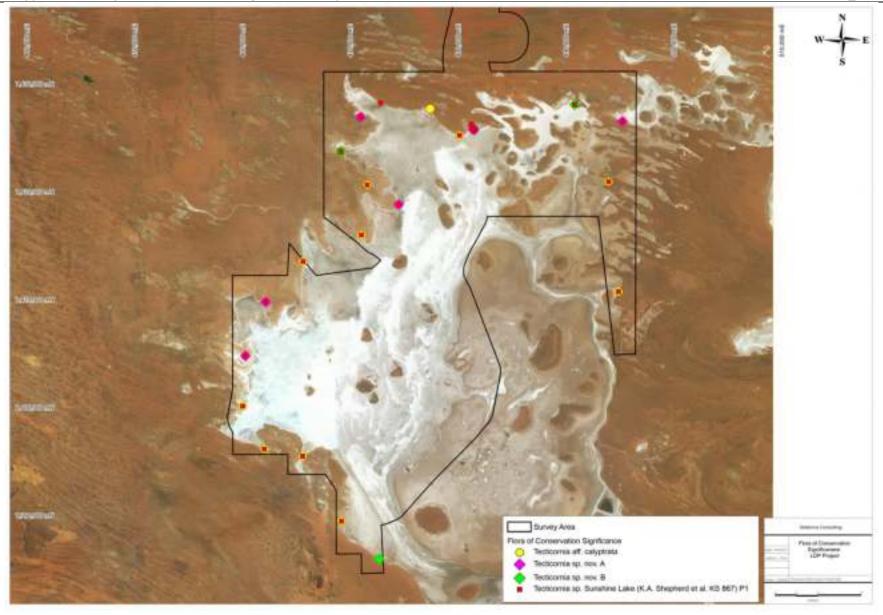


Figure 12: Flora of Conservation Significance identified within the LDP Project survey area

4.3 Floristic Communities

Fourteen vegetation types were identified within the survey area. These vegetation types were located within six different landform types and comprised eight major vegetation groups, and were represented by a total of 47 Families, 134 Genera and 327 Taxa (including 84 annual taxa) (Appendix 3). A map showing the vegetation types present in the survey area is located in Appendix 2 and a summary of vegetation types is presented in Table 9.

Table 9: Summary of vegetation types within the Lake Disappointment Potash Project survey area

Landform	Major Vegetation Group	Vegetation Type	Vegetation Code	Ha area within survey area	% area within survey area
Closed Depression	Chenopod Shrublands, Samphire Shrublands and Forblands (MVG22)	Heath of mixed <i>Tecticornia</i> spp. on Salt Lake edge	CD-CSSSF1	5984	4.4
ed	Not Vegetated	Salt Lake	CD-SL1	70,529	52.3
Clos	Other Grasslands, Herblands, Sedgelands and Rushlands (MVG21)	Open mixed herbs in clay-loam depression	CD-OGHSR1	478	0.4
	Casuarina Forests and Woodlands (MVG 8)	Low forest of Allocasuarina decaisneana over open scrub of Acacia/ Grevillea and mid-dense hummock grass of Triodia basedowii on sand dunes/ swales	D-CFW1	642	0.5
Dunefield Hummock	Open low woodland of <i>Corymbia</i> opaca over low scrub of Acacia/Grevillea spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on sand dunes/ swales	D-HG1	29,600	22	
	Grasslands (MVG20)	Scrub of Acacia/Eremophila/Grevillea spp. over mid-dense hummock grass of Triodia basedowii on sand dunes/ swales	D-HG2	6518	4.8
uo	Acacia Forests and Woodlands (MVG 6)	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Senna artemisioides</i> and mixed dwarf scrub in drainage depression	OD-AFW1	516	0.4
Open Depressid	Eucalypt Woodland (MVG 5)	Open low woodland of <i>Eucalyptus</i> camaldulensis/ Corymbia spp. over mid-dense hummock grass of <i>Triodia</i> spp. in creekline	OD-EW1	3029	2.2
ďO	Other Shrublands (MVG 17)	Low woodland of <i>Hakea lorea/ Melaleuca glomerata</i> over low heath of <i>Fimbristylis eremophila</i> in drainage depression	OD-OS1	698	0.5

Landform	Major Vegetation Group	Vegetation Type	Vegetation Code	Ha area within survey area	% area within survey area
		Open low woodland of <i>Corymbia</i> spp./ <i>Hakea lorea</i> over low scrub of <i>Acacia</i> spp. and mid-dense hummock grass of <i>Triodia</i> spp. in sandplain	P-HG1	8720	6.5
Plain	Hummock Grasslands (MVG20)	Open shrub mallee of Eucalyptus gamophylla/ E. kingsmillii subsp. kingsmillii over low scrub of Acacia bivenosa and mid-dense hummock grass of Triodia basedowii in sandplain	P-HG2	2442	1.8
lope	Acacia Forests and Woodlands (MVG 6)	Scrub of <i>Acacia</i> spp. over mixed low scrub and mid-dense hummock grass of <i>Triodia pungens</i> on rocky hillslope	RH-AFW1	1077	0.8
Rocky Hillslope	Mallee Woodlands and Shrublands (MVG 14)	Open shrub mallee of <i>Eucalyptus</i> gamophylla/ E. kingsmillii subsp. kingsmillii over low scrub of <i>Acacia/</i> Grevillea spp. and mid-dense hummock grass of <i>Triodia</i> spp. on rocky hillslope	RH-MWS1	1356	1.0
Rocky Plain	Acacia Forests and Woodlands (MVG 6)	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Eremophila/ Senna</i> spp. And mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	RP-AFW1	1572	1.2
Rocky	Hummock Grasslands (MVG20)	Open low woodland of <i>Corymbia</i> aspera over low scrub of <i>Acacia</i> spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	RP-HG1	1639	1.2
	TOTAL 134800 100				

Closed Depression: Chenopod Shrublands, Samphire Shrublands and Forblands

4.3.1 Heath of mixed *Tecticornia* spp. on Salt Lake edge (CD-CSSSF1)

The total flora recorded within this vegetation type was represented by a total of 11 Families, 19 Genera and 36 Taxa (Plate 5). No Threatened Flora taxa were identified within this community. One Priority Flora taxon was identified within this community; *Tecticornia* sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1). Two unrecognised taxa of *Tecticornia* (as identified by K.A Shepherd 867) (*Tecticornia* sp. nov A and *Tecticornia* sp. nov B) were identified in this floristic community, which are considered to be of Conservation Significance. A third *Tecticornia* specimen, *Tecticornia* aff. *calyptrata*, also considered to be of Conservation Significance was also identified in this floristic community. Dominant taxa from the vegetation assemblage are shown in Table 10. According to the NVIS, this community is best represented by the MVG22- Chenopod Shrublands, Samphire Shrublands and Forblands (DotEE, 2016b).

Table 10: Vegetation assemblage for Heath of mixed Tecticornia spp. on Salt Lake edge

Life Form/Height Class	Canopy Cover	Dominant species present
Samphire Shrub <0.5m	10-30%	Tecticornia aff. calyptrata (CS) Tecticornia sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1)

Plate 5: Heath of mixed Tecticornia spp. on Salt Lake edge

Closed Depression: Other Grasslands, Herblands, Sedgelands and Rushlands

4.3.2 Open mixed herbs in clay-loam depression (CD-OGHSR1)

The total flora recorded within this vegetation type was represented by a total of 18 Families, 33 Genera and 39 Taxa (Plate 6). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 11. According to the NVIS, this community is best represented by the MVG21- Other Grasslands, Herblands, Sedgelands and Rushlands (DotEE, 2016b).

Table 11: Vegetation assemblage for Open mixed herbs in clay-loam depression

Life Form/Height Class	Canopy Cover	Dominant species present
Shrub <0.5m	10-30%	Glossostigma diandrum Lepidium pholidogynum Stylidium desertorum

Plate 6: Open mixed herbs in clay-loam depression

Within this vegetation type there was a claypan sub-community (Plate 7). Species within the claypan included, *Alternanthera nodiflora, Tecticornia verrucosa, Lipocarpha microcephala, Drosera indica, Schenkia clementii, Calandrinia pleiopetala, ?Levenhookia chippendalei* and *Stylidium desertorum*. No quadrats were established within this sub-community, due to the isolated/ limited distribution of this sub-community.

Plate 7: Claypan within Open mixed herbs in clay-loam depression

Dunefield: Casuarina Forests and Woodlands

4.3.3 Low forest of *Allocasuarina decaisneana* over open scrub of *Acacia/ Grevillea* and mid-dense hummock grass of *Triodia basedowii* on sand dunes/ swales (D-CFW1)

The total flora recorded within this vegetation type was represented by a total of 17 Families, 30 Genera and 38 Taxa (Plate 8). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 12. According to the NVIS, this community is best represented by the MVG8- Casuarina Forests and Woodlands (DotEE, 2016b).

Table 12: Vegetation assemblage for Low forest of *Allocasuarina decaisneana* over open scrub of *Acacia/ Grevillea* and mid-dense hummock grass of *Triodia basedowii* on sand dunes/ swales

Life Form/Height Class	Canopy Cover	Dominant species present
Tree <10m	30-70%	Allocasuarina decaisneana
Shrub 1-2m	5-10%	Acacia ligulata Acacia melleodora Grevillea juncifolia subsp. juncifolia
Hummock Grass <0.5m	30-70%	Triodia basedowii

Plate 8: Low forest of *Allocasuarina decaisneana* over open scrub of *Acacia/ Grevillea* and mid-dense hummock grass of *Triodia basedowii* on sand dunes/ swales

Dunefield: Hummock Grasslands

4.3.4 Open low woodland of *Corymbia opaca* over low scrub of *Acacia/Grevillea* spp. and mid-dense hummock grass of *Triodia basedowii* on sand dunes/swales (D-HG1)

The total flora recorded within this vegetation type was represented by a total of 30 Families, 77 Genera and 147 Taxa (Plate 9). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 13. According to the NVIS, this community is best represented by the MVG20- Hummock grasslands (DotEE, 2016b).

Table 13: Vegetation assemblage for Open low woodland of *Corymbia opaca* over low scrub of *Acacia/Grevillea* spp. and mid-dense hummock grass of *Triodia basedowii* on sand dunes/swales

Life Form/Height Class	Canopy Cover	Dominant species present
Tree <10m	5-10%	Corymbia opaca
Shrub 1-2m	10-30%	Acacia ligulata Grevillea juncifolia subsp. juncifolia
Shrub <1m	10-30%	Newcastelia spodiotricha
Hummock Grass <0.5m	30-70%	Triodia basedowii

Plate 9: Open low woodland of *Corymbia opaca* over low scrub of *Acacia/Grevillea* spp. and middense hummock grass of *Triodia basedowii* on sand dunes/swales

4.3.5 Scrub of *Acacia/Eremophila/Grevillea* spp. over mid-dense hummock grass of *Triodia basedowii* on sand dunes/ swales (D-HG2)

The total flora recorded within this vegetation type was represented by a total of 34 Families, 78 Genera and 149 Taxa (Plate 10). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 14. According to the NVIS, this community is best represented by the MVG20- Hummock grasslands (DotEE, 2016b).

Table 14: Vegetation assemblage for Scrub of *Acacia/Eremophila/Grevillea* spp. over mid-dense hummock grass of *Triodia basedowii* on sand dunes/ swales

Life Form/Height Class	Canopy Cover	Dominant species present
Shrub >2m	10-30%	Acacia cuthbertsonii subsp. cuthbertsonii
Shrub 1-2m	10-30%	Acacia ligulata Eremophila latrobei subsp. filiformis Grevillea juncifolia subsp. juncifolia Senna artemisioides subsp. oligophylla
Hummock Grass <0.5m	30-70%	Triodia basedowii

Plate 10: Scrub of *Acacia/Eremophila/Grevillea* spp. over mid-dense hummock grass of *Triodia* basedowii on sand dunes/ swales

Open Depression: Eucalypt Woodlands

4.3.6 Low woodland of *Acacia* spp. over low scrub of *Senna artemisioides* and mixed dwarf scrub in drainage depression (OD-AFW1)

The total flora recorded within this vegetation type was represented by a total of 22 Families, 38 Genera and 55 Taxa (Plate 11). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 15. According to the NVIS, this community is best represented by the MVG6- Acacia Forests and Woodlands (DotEE, 2016b). One introduced species; *Cenchrus ciliaris* (Buffalo Grass) was recorded in this vegetation community. According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*.

Table 15: Vegetation assemblage for Low woodland of *Acacia* spp. over low scrub of *Senna* artemisioides and mixed dwarf scrub in drainage depression

Life Form/Height Class	Canopy Cover	Dominant species present
Tree <10m	10-30%	Acacia aptaneura Acacia incurvaneura
Shrub 1-2m	10-30%	Senna artemisioides subsp. helmsii
Shrub <1m	30-70%	Sida brownii Solanum lasiophyllum

Plate 11: Low woodland of *Acacia* spp. over low scrub of *Senna artemisioides* and mixed dwarf scrub in drainage depression

Open Depression: Eucalypt Woodlands

4.3.7 Open low woodland of *Eucalyptus camaldulensis/ Corymbia* spp. over mid-dense hummock grass of *Triodia* spp. in creekline (OD-EW1)

The total flora recorded within this vegetation type was represented by a total of 30 Families, 76 Genera and 134 Taxa (Plate 12). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 16. According to the NVIS, this community is best represented by the MVG5- Eucalypt Woodlands (DotEE, 2016b). One introduced species; *Cenchrus ciliaris* (Buffalo Grass) was recorded in this vegetation community. According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*.

Table 16: Vegetation assemblage for Open low woodland of *Eucalyptus camaldulensis/ Corymbia* spp. over mid-dense hummock grass of *Triodia* spp. in creekline

Life Form/Height Class	Canopy Cover	Dominant species present
Tree 10-30m	10-30%	Eucalyptus camaldulensis
Tree <10m	5-10%	Corymbia aspera Corymbia opaca
Shrub 1-2m	10-30%	Acacia bivenosa Acacia melleodora Acacia pyrifolia var. pyrifolia Acacia victoriae Grevillea wickhamii subsp. aprica
Hummock Grass <0.5m	30-70%	Triodia basedowii Triodia pungens

Plate 12: Open low woodland of *Eucalyptus camaldulensis/ Corymbia* spp. over mid-dense hummock grass of *Triodia* spp. in creekline

Open Depression: Other Shrublands

4.3.8 Low woodland of *Hakea lorea/ Melaleuca glomerata* over low heath of *Fimbristylis* eremophila in drainage depression (OD-OS1)

The total flora recorded within this vegetation type was represented by a total of 13 Families, 17 Genera and 22 Taxa (Plate 13). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 17. According to the NVIS, this community is best represented by the MVG17- Other Shrublands (DotEE, 2016b).

Table 17: Vegetation assemblage for Low woodland of Hakea lorea/ Melaleuca glomerata over low heath of Fimbristylis eremophila in drainage depression

Life Form/Height Class	Canopy Cover	Dominant species present
Tree <10m	10-30%	Hakea lorea Melaleuca glomerata
Shrub 1-2m	10-30%	Acacia bivenosa Dicrastylis exsuccosa
Shrub <1m	30-70%	Fimbristylis eremophila

Plate 13: Low woodland of *Hakea lorea/ Melaleuca glomerata* over low heath of *Fimbristylis eremophila* in drainage depression

Plain: Hummock Grassland

4.3.9 Open low woodland of *Corymbia* spp. over low scrub of *Acacia* spp. and mid-dense hummock grass of *Triodia* spp. in sandplain (P-HG1)

The total flora recorded within this vegetation type was represented by a total of 26 Families, 69 Genera and 124 Taxa (Plate 14). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 18. According to the NVIS, this community is best represented by the MVG20- Hummock Grasslands (DotEE, 2016b). One introduced species; *Cenchrus ciliaris* (Buffalo Grass) was recorded in this vegetation community. According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*.

Table 18: Vegetation assemblage for Open low woodland of *Corymbia* spp. over low scrub of *Acacia* spp. and mid-dense hummock grass of *Triodia* spp. in sandplain

Life Form/Height Class	Canopy Cover	Dominant species present
Tree <10m	5-10%	Corymbia aspera Corymbia opaca
Shrub 1-2m	5-10%	Acacia melleodora Acacia pyrifolia var. pyrifolia Grevillea wickhamii subsp. aprica
Hummock Grass <0.5m	30-70%	Triodia basedowii Triodia pungens

Plate 14: Open low woodland of *Corymbia* spp. over low scrub of *Acacia* spp. and mid-dense hummock grass of *Triodia* spp. in sandplain

4.3.10 Open shrub mallee of *Eucalyptus gamophylla/ E. kingsmillii* subsp. *kingsmillii* over low scrub of *Acacia bivenosa* and mid-dense hummock grass of *Triodia basedowii* in sandplain (P-HG2)

The total flora recorded within this vegetation type was represented by a total of 15 Families, 28 Genera and 35 Taxa (Plate 15). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 19. According to the NVIS, this community is best represented by the MVG20- Hummock Grasslands (DotEE, 2016b).

Table 19: Vegetation assemblage for Open shrub mallee of *Eucalyptus gamophylla/ E. kingsmillii* subsp. *kingsmillii* over low scrub of *Acacia bivenosa* and mid-dense hummock grass of *Triodia basedowii* in sandplain

Life Form/Height Class	Canopy Cover	Dominant species present
Mallee Shrub	5-10%	Eucalyptus gamophylla Eucalyptus kingsmillii subsp. kingsmillii
Shrub 1-2m	10-30%	Acacia bivenosa
Hummock Grass <0.5m	30-70%	Triodia basedowii

Plate 15: Open shrub mallee of *Eucalyptus gamophylla/ E. kingsmillii* subsp. *kingsmillii* over low scrub of *Acacia bivenosa* and mid-dense hummock grass of *Triodia basedowii* in sandplain

Rocky Hillslope: Acacia Forests and Woodlands

4.3.11 Scrub of *Acacia* spp. over mixed low scrub and mid-dense hummock grass *of Triodia* pungens on rocky hillslope (RH-AFW1)

The total flora recorded within this vegetation type was represented by a total of 13 Families, 20 Genera and 24 Taxa (Plate 16). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 20. According to the NVIS, this community is best represented by the MVG6- Acacia Forests and Woodlands (DotEE, 2016b).

Table 20: Vegetation assemblage for Scrub of *Acacia* spp. over mixed low scrub and mid-dense hummock grass of *Triodia pungens* on rocky hillslope

Life Form/Height Class	Canopy Cover	Dominant species present
Shrub >2m	10-30%	Acacia balsamea Acacia pachyacra
Shrub 1-2m	10-30%	Acacia bivenosa Eremophila exilifolia
Hummock Grass <0.5m	30-70%	Triodia pungens

Plate 16: Scrub of *Acacia* spp. over mixed low scrub and mid-dense hummock grass *of Triodia* pungens on rocky hillslope

Rocky Hillslope: Mallee Woodlands and Shrublands

4.3.12 Open shrub mallee of *Eucalyptus gamophylla/ E. kingsmillii* subsp. *kingsmillii* over low scrub of *Acacia/ Grevillea* spp. and mid-dense hummock grass of *Triodia* spp. on rocky hillslope (RH-MWS1)

The total flora recorded within this vegetation type was represented by a total of 16 Families, 28 Genera and 49 Taxa (Plate 17). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 21. One introduced species; *Cenchrus ciliaris* (Buffalo Grass) was recorded in this vegetation community. According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*. According to the NVIS, this community is best represented by the MVG14- Mallee Woodlands and Shrublands (DotEE, 2016b).

Table 21: Vegetation assemblage for Open shrub mallee of *Eucalyptus gamophylla/ E. kingsmillii* subsp. *kingsmillii* over low scrub of *Acacia/ Grevillea* spp. and mid-dense hummock grass of *Triodia* spp. on rocky hillslope

Life Form/Height Class	Canopy Cover	Dominant species present
Mallee Shrub	5-10%	Eucalyptus gamophylla Eucalyptus kingsmillii subsp. kingsmillii
Shrub 1-2m	10-30%	Acacia balsamea Acacia bivenosa Acacia hilliana Acacia retivenea subsp. clandestina Grevillea wickhamii subsp. wickhamii
Hummock Grass <0.5m	30-70%	Triodia basedowii Triodia pungens

Plate 17: Open shrub mallee of *Eucalyptus gamophylla/ E. kingsmillii* subsp. *kingsmillii* over low scrub of *Acacia/ Grevillea* spp. and mid-dense hummock grass of *Triodia* spp. on rocky hillslope

Rocky Plain: Acacia Forests and Woodlands

4.3.13 Low woodland of *Acacia* spp. over low scrub of *Eremophila/ Senna* spp. and mid-dense hummock grass of *Triodia basedowii* on rocky plain (RP-AFW1)

The total flora recorded within this vegetation type was represented by a total of 21 Families, 33 Genera and 56 Taxa (Plate 18). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 22. One introduced species; *Cenchrus ciliaris* (Buffalo Grass) was recorded in this vegetation community. According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*. According to the NVIS, this community is best represented by the MVG6- Acacia Forests and Woodlands (DotEE, 2016b).

Table 22: Vegetation assemblage for Low woodland of *Acacia* spp. over low scrub of *Eremophila/*Senna spp. and mid-dense hummock grass of *Triodia basedowii* on rocky plain

Life Form/Height Class	Canopy Cover	Dominant species present
Tree <10m	10-30%	Acacia aptaneura Acacia kempeana
Shrub 1-2m	10-30%	Eremophila compacta Eremophila exilifolia Senna glutinosa subsp. chatelainiana
Hummock Grass <0.5m	30-70%	Triodia basedowii

Plate 18: Low woodland of *Acacia* spp. over low scrub of *Eremophila/* Senna spp. and mid-dense hummock grass of *Triodia basedowii* on rocky plain

Rocky Plain: Hummock Grasslands

4.3.14 Open low woodland of *Corymbia aspera* over low scrub of *Acacia* spp. and mid-dense hummock grass of *Triodia basedowii* on rocky plain (RP-HG1)

The total flora recorded within this vegetation type was represented by a total of 19 Families, 34 Genera and 55 Taxa (Plate 19). No Threatened Flora or Priority Flora taxa were identified within this community. Dominant taxa from the vegetation assemblage are shown in Table 23. One introduced species; *Cenchrus ciliaris* (Buffalo Grass) was recorded in this vegetation community. According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*. According to the NVIS, this community is best represented by the MVG20- Hummock Grasslands (DotEE, 2016b).

Table 23: Vegetation assemblage for Open low woodland of *Corymbia aspera* over low scrub of *Acacia* spp. and mid-dense hummock grass of *Triodia basedowii* on rocky plain

Life Form/Height Class	Canopy Cover	Dominant species present	
Tree <10m	5-10%	Corymbia aspera	
Shrub 1-2m	10-30%	Acacia ancistrocarpa Acacia aptaneura Acacia melleodora	
Hummock Grass <0.5m	30-70%	Triodia basedowii	

Plate 19: Open low woodland of *Corymbia aspera* over low scrub of *Acacia* spp. and mid-dense hummock grass of *Triodia basedowii* on rocky plain

4.4 Vegetation Condition

Based on the vegetation condition rating scale adapted from Keighery, 1994 and Trudgen, 1988 (Appendix 9), three vegetation types were rated as 'poor', one rated as 'good' and the remaining eleven vegetation types had a vegetation condition rating of 'very good' (Table 24). A map of the vegetation condition within the survey area is provided in Figure 13.

'Poor' condition indicates vegetation still retains its basic vegetation structure or has ability to regenerate it after very obvious impacts of human activities since European settlement, such as grazing, partial clearing, frequent fires or aggressive weeds (in this instance, vegetation was in poor condition as a result of access track development (Talawana track), high density presence of the introduced species *Cenchrus ciliaris* (Buffel Grass), recent and/ or frequent fires and disturbance (grazing/ tracks) from introduced fauna (camels).

'Good' condition depicts that vegetation has been impacted by more obvious signs of damage caused by human activity since European settlement, including some obvious impact on the vegetation structure such as that caused by low levels of grazing (donkeys and camels) or slightly aggressive weeds.

'Very Good' condition depicts that vegetation has some relatively slight signs of damage caused by human activities since European settlement. For example, some signs of damage to tree trunks caused by repeated fire, the presence of some relatively non-aggressive weeds, or occasional vehicle tracks.

Table 24: Vegetation Condition Rating for Vegetation types of the Lake Disappointment Potash Project survey area

Landform	Major Vegetation Group	Floristic Community	Vegetation Code	Condition Rating
Closed Depression	Chenopod Shrublands, Samphire Shrublands and Forblands (MVG22)	Heath of mixed <i>Tecticornia</i> spp. on Salt Lake edge	CD-CSSSF1	Very Good
] þe	N/A	Salt Lake	CD-SL1	N/A
Close	Other Grasslands, Herblands, Sedgelands and Rushlands (MVG21)	Open mixed herbs in clay-loam depression	CD-OGHSR1	Very Good
Dunefield	Casuarina Forests and Woodlands (MVG 8)	Low forest of Allocasuarina decaisneana over open scrub of Acacia/ Grevillea and mid-dense hummock grass of Triodia basedowii on sand dunes/ swales	D-CFW1	Very Good
	Hummock Grasslands (MVG20)	Open low woodland of <i>Corymbia</i> opaca over low scrub of Acacia/Grevillea spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on sand dunes/ swales	D-HG1	Very Good

Landform	Major Vegetation Group	Floristic Community	Vegetation Code	Condition Rating
		Scrub of Acacia/Eremophila/Grevillea spp. over mid-dense hummock grass of Triodia basedowii on sand dunes/ swales	D-HG2	Very Good
ion	Acacia Forests and Woodlands (MVG 6)	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Senna artemisioides</i> and mixed dwarf scrub in drainage depression	OD-AFW1	Good
Open Depression	Eucalypt Woodland (MVG 5)	Open low woodland of <i>Eucalyptus</i> camaldulensis/ Corymbia spp. over mid-dense hummock grass of <i>Triodia</i> spp. in creekline	OD-EW1	Poor
Ö	Other Shrublands (MVG 17)	Low woodland of <i>Hakea lorea/ Melaleuca glomerata</i> over low heath of <i>Fimbristylis eremophila</i> in drainage depression	OD-OS1	Very Good
Plain	Hummock Grasslands (MVG20)	Open low woodland of <i>Corymbia</i> spp./ <i>Hakea lorea</i> over low scrub of <i>Acacia</i> spp. and mid-dense hummock grass of <i>Triodia</i> spp. in sandplain	P-HG1	Poor
		Open shrub mallee of Eucalyptus gamophylla/ E. kingsmillii subsp. kingsmillii over low scrub of Acacia bivenosa and mid-dense hummock grass of Triodia basedowii in sandplain	P-HG2	Very Good
Hillslope	Acacia Forests and Woodlands (MVG 6)	Scrub of <i>Acacia</i> spp. over mixed low scrub and mid-dense hummock grass of <i>Triodia pungens</i> on rocky hillslope	RH-AFW1	Very Good
Rocky Hills	Mallee Woodlands and Shrublands (MVG 14)	Open shrub mallee of <i>Eucalyptus</i> gamophylla/ E. kingsmillii subsp. kingsmillii over low scrub of Acacia/ Grevillea spp. and mid-dense hummock grass of <i>Triodia</i> spp. on rocky hillslope	RH-MWS1	Very Good
Rocky Plain	Acacia Forests and Woodlands (MVG 6)	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Eremophila/ Senna</i> spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	RP-AFW1	Poor
	Hummock Grasslands (MVG20)	Open low woodland of <i>Corymbia</i> aspera over low scrub of <i>Acacia</i> spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	RP-HG1	Very Good

Figure 13: Vegetation Condition Rating of the Lake Disappointment Potash Project survey area

4.5 Introduced Plant Species

One introduced species was identified within the survey area; *Cenchrus ciliaris* (Buffel grass) According to the DAFWA this species is not listed as a Declared Plant under Section 22 of the *BAM Act 2007*.

4.5.1 Cenchrus ciliaris (Buffel Grass)

This species is described as a tufted or sometimes stoloniferous perennial, grass-like or herbaceous plant that grows 0.2-1.5m high (Plate 20). It produces purple flowers from February to October. Its preferred habitat is white, red or brown sand, stony red loam and black cracking clay (WAHERB, 2017). *Cenchrus ciliaris* was identified in six vegetation types:

- 1. OD-AFW1;
- 2. OD-EW1;
- 3. P-HG1;
- 4. RH-MWS1;
- 5. RP-AFW1; and
- 6. RP-HG1

Plate 20: Cenchrus ciliaris (Buffel grass)

4.6 Floristic Composition of the Lake Disappointment Potash Project Quadrats

This analysis was used to determine the similarities or differences between vegetation types. Appendix 8 provides the dendrogram and ordination graph for all generated from the PATN statistical analysis. A list of the 117 quadrats and their respective vegetation communities are provided in Table 25 below. The PATN analysis produced a stress value of 0.2306.

Table 25: Vegetation communities with corresponding quadrats

Landform	Major Vegetation Group	Floristic Community	Vegetation Code	Quadrats
Closed Depression	Chenopod Shrublands, Samphire Shrublands and Forblands (MVG22)	Heath of mixed <i>Tecticornia</i> spp. on Salt Lake edge	CD-CSSSF1	Q9, Q16, Q17, Q30, Q31, Q32, Q33, Q34, Q35, Q37, Q38, Q39, Q40, Q41, Q42, Q43, Q73
J pg	N/A	Salt Lake	CD-SL1	N/A
Close	Other Grasslands, Herblands, Sedgelands and Rushlands (MVG21)	Open mixed herbs in clay-loam depression	CD-OGHSR1	Q11, Q12, Q22, Q44
	Casuarina Forests and Woodlands (MVG 8)	Low forest of Allocasuarina decaisneana over open scrub of Acacia/ Grevillea and mid-dense hummock grass of Triodia basedowii on sand dunes/ swales	D-CFW1	Q77, Q78, Q102, Q106, Q109
Dunefield	Hummock Grasslands (MVG20)	Open low woodland of <i>Corymbia</i> opaca over low scrub of Acacia/Grevillea spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on sand dunes/ swales	D-HG1	Q3, Q4, Q5, Q6, Q7, Q8, Q14, Q15, Q18, Q19, Q36, Q45, Q47, Q48, Q51, Q59, Q72, Q74 ⁶ , Q75, Q92, Q93, Q105, Q107
		Scrub of Acacia/Eremophila/Grevillea spp. over mid-dense hummock grass of Triodia basedowii on sand dunes/ swales	D-HG2	Q1, Q2, Q10, Q13, Q20, Q21, Q29, Q46, Q49, Q50, Q52, Q62, Q76, Q91, Q101, Q108, Q110
Open Depression	Acacia Forests and Woodlands (MVG 6)	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Senna artemisioides</i> and mixed dwarf scrub in drainage depression	OD-AFW1	Q63, Q65, Q66, Q67, Q88, Q97
	Eucalypt Woodland (MVG 5)	Open low woodland of <i>Eucalyptus</i> camaldulensis/ Corymbia spp. over mid-dense hummock grass of <i>Triodia</i> spp. in creekline	OD-EW1	Q23, Q26, Q27, Q28, Q57, Q68, Q69, Q89, Q96, Q115
	Other Shrublands (MVG 17)	Low woodland of Hakea lorea/ Melaleuca glomerata over low heath of Fimbristylis eremophila in drainage depression	OD-OS1	Q60, Q61

⁶ Removed from PATN analysis-located within interzone between D-HG1 and CD-CSSSF1

Landform	Major Vegetation Group	Floristic Community	Vegetation Code	Quadrats
		Open low woodland of <i>Corymbia</i> spp./ <i>Hakea lorea</i> over low scrub of <i>Acacia</i> spp. and mid-dense hummock grass of <i>Triodia</i> spp. in sandplain	P-HG1	Q24, Q25, Q53, Q58, Q64, Q70, Q71, Q79, Q82, Q84, Q86, Q87, Q90, Q98
Plain	Hummock Grasslands (MVG20)	Open shrub mallee of Eucalyptus gamophylla/ E. kingsmillii subsp. kingsmillii over low scrub of Acacia bivenosa and mid-dense hummock grass of Triodia basedowii in sandplain	P-HG2	Q81, Q85, Q100, Q103
ilope	Acacia Forests and Woodlands (MVG 6)	Scrub of <i>Acacia</i> spp. over mixed low scrub and mid-dense hummock grass of <i>Triodia pungens</i> on rocky hillslope	RH-AFW1	Q80, Q83, Q99
Rocky Hillslope	Mallee Woodlands and Shrublands (MVG 14)	Open shrub mallee of Eucalyptus gamophylla/ E. kingsmillii subsp. kingsmillii over low scrub of Acacia/ Grevillea spp. and mid-dense hummock grass of Triodia spp. on rocky hillslope	RH-MWS1	Q54, Q55, Q56, Q94, Q95, Q104
Rocky Plain	Acacia Forests and Woodlands (MVG 6)	Low woodland of <i>Acacia</i> spp. over low scrub of <i>Eremophila/ Senna</i> spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	RP-AFW1	Q112, Q114, Q117
	Hummock Grasslands (MVG20)	Open low woodland of <i>Corymbia</i> aspera over low scrub of <i>Acacia</i> spp. and mid-dense hummock grass of <i>Triodia basedowii</i> on rocky plain	RP-HG1	Q111, Q113, Q116
TOTAL				117

Three 'supergroups' were identified in the PATN analysis:

- 1. Mixed group (Dunefield, Open Depression, Plain, Rocky Hillslope & Rocky Plain);
- 2. Open Depression Group; and
- 3. Closed Depression Group.

The 'Mixed' supergroup was divided into ten floristic groups, comprising of quadrats from each of the different landform types (excluding closed depression) and major vegetation groups. The dunefield communities were divided into a total of seven floristic groups (D-CFW1 community into four groups, D-HG1 into four groups, D-HG2 into seven groups). Two of the OD-AFW1 quadrats within this supergroup were separated into two floristic groups. The OD-EW1 quadrats were separated into two floristic groups. The remaining OD-AFW1 quadrats were separated into the second supergroup. The two sandplain communities (P-HG1 and P-HG2) were divided into two floristic groups respectively. The three RH-AFW1 quadrats were grouped together (Group 10) along with one RH-MWS1 quadrat (Q104), one D-HG2 quadrat (Q108) and one RP-HG1 (Q111). Four of the RH-MWS1 quadrats were grouped together (Group 5) with four of the OD-EW1 quadrats, four of the P-HG1 quadrats and one P-H2 quadrat.

The three RP-AFW1 quadrats were divided into three floristic groups (Group 7-9) and RP-HG1 quadrats were divided into two floristic groups (Group 8-9).

The 'Open Depression' supergroup was divided into one floristic group (Group 11) comprised of four of the six OD-AFW1 quadrats, all of which were located in the same isolated patch of OD-AFW1 located on the eastern edge of Mackay creek.

The 'Closed Depression' supergroup was divided into three floristic groups; one group (Group 12) comprising 16 of the CD-CSSSF1 quadrats and the second group (Group 13) comprising the one remaining CD-CSSF1 quadrat (Q35). These two floristic groups were closely related to one another with the main distinction between these quadrats a result of the low diversity within Q35 and the absence of *Tecticornia* Sunshine Lake (K.A. Shepherd et al KS 867). The third floristic group (Group 14) comprised all four of the Open mixed herbs in clay-loam depression (CD-OGHSR1) quadrats, which were grouped together into one distinct group. This vegetation type was predominantly found within a low-lying clay drainage depression. Flora species characteristic of this community (though not necessarily restricted to it) included *Maireana tomentosa*, *Atriplex vesicaria*, *Surreya diandra* and *Frankenia cinerea*.

Based on the results of the PATN analysis, there was minimal heterogeneity in species composition across the survey area, with majority of vegetation types intermixed into floristic groups despite differences in both dominant stratum taxa and landform; however, three distinct supergroups were identified. The first supergroup comprised of a mix of vegetation types identified in the field including quadrats from the dunefields, sandplains, open depressions (including Eucalypt quadrats associated with Mackay creek), rocky hillslopes and rocky plains. The second supergroup comprised quadrats from the Acacia Forests and Woodlands open depression (OD-AFW1) located in an isolated patch on the eastern edge of Mackay creek. The third supergroup comprised closed depression quadrats from the lake edge (CD-CSSSF1) and open herb community in low-lying depressions (CD-OGHSR1). Species composition of the riparian vegetation (CD-CSSSF1) showed little variation along the entire boundary of the lake, and was more closely related to low lying drainage depressions of the open herb community (CD-OGHSR1) than the dunefield/ sandplain, open depression and rocky communities; however, both communities were delineated into distinct floristic groups.

4.6.1 Species Richness and accumulation estimates

The Chaos 2 richness estimator provided an estimated species richness of 269 species in 117 sample sites (quadrats). Species richness recorded for the 117 quadrats surveyed was 284 species (including annuals) which indicates survey intensity was adequate.

A species accumulation curve was created to display the rate of species accumulation. The R² value (0.97) suggests that the data "fits" the species accumulation curve shown in Figure 14. The rate of species accumulation for the first 20 quadrats ranged from nine to three species per quadrat. The rate of species accumulation between 20-50 quadrats was two-four species per quadrat. Species accumulation reduced to ≤1 species per quadrat as quadrat number increased above 70. BC has determined that according to this data a sufficient number of quadrats were established in the survey area to adequately assess the floristic composition of the area.

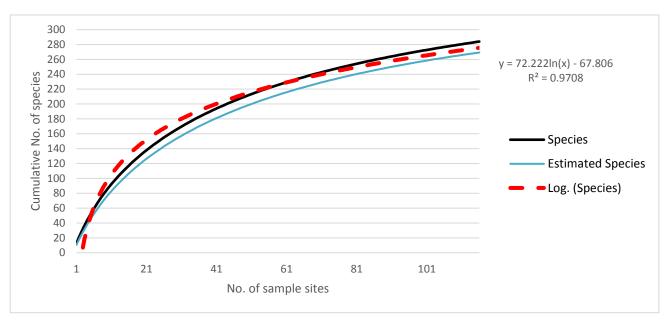


Figure 14: Species accumulation curve

4.7 Vegetation of Conservation Significance

4.7.1 Matters of National Environmental Significance

None of the following matters of national environmental significance as defined by the Commonwealth *EPBC Act 1999* were identified within the survey area:

- world heritage properties
- national heritage places
- wetlands of international importance (often called 'Ramsar' wetlands after the international treaty under which such wetlands are listed)
- nationally threatened species and ecological communities
- Commonwealth marine areas
- the Great Barrier Reef Marine Park
- nuclear actions (including uranium mining) a water resource, in relation to coal seam gas development and large coal mining development.

4.7.2 Matters of State Environmental Significance

Lake Disappointment is listed by the DotEE and ANCA as a Nationally Important Wetland of Western Australia; however, it is not listed as a Ramsar Wetland (Internationally Important Wetland) under Commonwealth legislation.

The survey area does not contain any TEC or Threatened Flora listed under the Western Australian *Environmental Protection Act 1986* and *Wildlife Conservation Act 1950*.

No PECs as listed by the DPaW were recorded within the survey are. The nearest PEC is the Priority 3 Ecological Community 'Riparian vegetation including phreatophytic species associated with creek lines and watercourses of Rudall River" (described as semi-permanent pools along courses of Rudall River (DPaW, 2016b)), which is located approximately 20 km north of the survey area. No ecosystems listed under the IUCN Red list of Ecosystems occur within the survey area.

One Priority Flora taxon; *Tecticornia* sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1) was identified within the survey area. Two unrecognised taxa of *Tecticornia* (as identified by K.A Shepherd 867) (*Tecticornia* sp. nov A and *Tecticornia* sp. nov B) were also identified in the survey area. These are considered to be of Conservation Significance. A third *Tecticornia* specimen, *Tecticornia* aff. *calyptrata* is also provisionally considered to be of Conservation Significance, as it is presently undergoing further taxonomical work by the WAHERB to confirm if it is a distinct taxon. All four taxa of conservation significance were identified within the Heath of mixed Tecticornia spp. on Salt Lake edge vegetation type.

Approximately 16,550 ha of the southern extremity of the survey area (including approximately 7.018ha of the development envelope as specified in *Lake Disappointment Potash Project-Flora and Vegetation Impact Assessment*, is located within the proposed Lake Disappointment Nature Reserve (listed under the EPA Red Book recommendations for Conservation Reserves 1975-1993) which covers an area of 366,700 ha. The Lake Disappointment Nature Reserve was first listed in the EPA Red Book as an area of proposed conservation and proposed in the DPaW Goldfields, Regional Management Plan 1994-2004 however the recommendation was for the proposal to be deferred and addressed in the Pilbara Regional Management Plan. To date this proposed reserve has not been gazetted.

Approximately 350 ha of the survey area (mid-section of the Talawana track) is located within the Rudall River National Park which is listed as a Class A National Park managed by the DPaW (as specified in *Lake Disappointment Potash Project-Flora and Vegetation Impact Assessment*, only 7.12 ha of the development envelope for the LDP Project (required for widening of existing Talawana track) is located within the most southern boundary of the Rudall River National Park). A description of the Rudall River National Park according to the DotEE (2016a) is provided below:

The Rudall River National Park is significant for maintaining on-going geomorphic and ecological processes within a tropical desert environment. It contains an entire landscape sequence which includes extensive dunefields, tablelands, an entire river/creek system, alluvial formations, saline lakes and palaeodrainage lines.

The place is a significant transition zone for flora and fauna between the Great Sandy Desert to the north, the Little Sandy Desert to the south and the semi-arid Pilbara to the west. A number of species are at their southern or northern limits of distribution are found in the place. The place is particularly important to the southern Eremaean bird population associated with low Mulga woodland. The place has a large number of habitats resulting in a diverse flora of over 400 species, over half of the known flora of the Great Sandy Desert. The Rudall River system is particularly important as it maintains significant communities of Eucalyptus camaldulensis, E aff. microtheca and Melaleuca leucadendra riparian woodlands which are not represented extensively in other sites in the Great Sandy Desert.

Within the north-eastern region of this National Park (approximately 89 km north of the northern boundary of the survey area and located well outside of the development envelope as shown in Appendix 10) is Lake Dora (Rudall River) System which is listed as a Nationally Important Wetland of Western Australia.

Approximately 70,567 ha of the survey area is located in an ESA (declared as an ESA under the EP Act as a 'defined wetland and the area within 50 metres of the wetland. Defined wetlands include Ramsar wetlands, conservation category wetlands and nationally important wetlands) which encompasses the entire boundary of Lake Disappointment. An additional 350 ha of the survey area (mid-section of the Talawana track) is also located within an ESA which encompasses the entire Rudall River National Park (declared as an ESA under the EP Act as 'an area that is included on the Register of the National Estate, because of its natural heritage value, under the Australian Heritage Council Act 2003 of the Commonwealth⁷).

A map showing areas of conservation significance in relation to the survey area is provided in Appendix 1.

⁷ The Register of the National Estate was closed in 2007 and is no longer a statutory list. All references to the Register of the National Estate were removed from the *Environment Protection and Biodiversity Conservation Act* 1999 (EPBC Act) on 19 February 2012.

5 **Summary**

Fourteen vegetation types were identified within the survey area. These vegetation types were located within six different landform types and comprised eight major vegetation groups, which were represented by a total of 47 Families, 134 Genera and 327 Taxa (including 84 annual taxa). Species composition assessments indicate there was minimal heterogeneity in species composition across the survey area, with majority of vegetation types intermixed into floristic groups despite differences in both dominant stratum taxa and landform; however, three distinct supergroups were identified. The first supergroup comprised of a mix of vegetation types identified in the field including quadrats from the dunefields, sandplains, open depressions (including Eucalypt quadrats associated with Mackay creek), rocky hillslopes and rocky plains. The second supergroup comprised quadrats from the Acacia Forests and Woodlands open depression (OD-AFW1) located in an isolated patch on the eastern edge of Mackay creek. The third supergroup comprised closed depression quadrats from the lake edge (CD-CSSSF1) and open herb community in low-lying depressions (CD-OGHSR1). Species composition of the riparian vegetation (CD-CSSSF1) showed little variation along the entire boundary of the lake, and was more closely related to low lying drainage depressions of the open herb community (CD-OGHSR1) than the dunefield/ sandplain, open depression and rocky communities; however, both communities were delineated into distinct floristic groups. The Chaos 2 richness estimator provided an estimated species richness of 269 species in 117 sample sites (quadrats). Species richness recorded for the 117 quadrats surveyed was 284 species (including annuals) which indicates survey intensity was adequate.

No Threatened Flora taxa listed under State or Commonwealth legislation were recorded within the survey area. One Priority 1 Flora taxon (*Tecticornia* sp. Sunshine Lake (K.A. Shepherd et al KS 867)) and three *Tecticornia* taxa considered to be of conservation significance (unrecognised taxa/potentially distinct taxa) were identified within the Heath of mixed *Tecticornia* spp. on Salt Lake edge vegetation type.

No TEC pursuant to State or Commonwealth legislation were identified within the survey area. No PEC as listed by DPaW were identified within the survey area. The survey area does not contain any world or national heritage places, wetlands of international importance (Ramsar Wetlands). Lake Disappointment is however listed as a Nationally Important Wetland of Western Australia.

Approximately 16,550 ha of the southern extremity of the survey area is located within the proposed Lake Disappointment Nature Reserve. To date this proposed reserve has not been approved. Approximately 350 ha of the survey area (mid-section of the Talawana track) is located within the Rudall River National Park which is listed as a Class A National Park managed by the DPaW.

Approximately 70,567 ha of the survey area is located in an ESA which encompasses Lake Disappointment. An additional 350 ha of the survey area (mid-section of the Talawana track) is also located within an ESA which encompasses the entire Rudall River National Park.

Vegetation condition in the survey area ranged from 'poor' to 'very good'. One introduced species was identified within the survey area; *Cenchrus ciliaris* (Buffel grass) which is not listed as a Declared Plant under the BAM Act.

6 **Bibliography**

Actis Environmental and Alexander Holm & Associates (2009), Lake Disappointment Potash Project Environmental Review and Program of Works.

ASRIS (2014), Atlas of Australian Soils Database, Australian Soil Resource Information System.

BC (2012) Level 1 Flora and Vegetation Survey of the Lake Disappointment Exploration Program, November 2012. Prepared by Botanica Consulting for Reward Minerals Limited.

BC (2013), Stage 2 Lake Disappointment Potash Project Environmental Impact Assessment and Monitoring Plan. Prepared by Botanica Consulting for Reward Minerals Limited.

Beard, J.S., (1990), Plant Life of Western Australia, Kangaroo Press Pty Ltd, NSW.

BoM, (2017a), *Telfer Aero rainfall station (#13030) 1974-2017*, Bureau of Meteorology http://www.bom.gov.au/climate/data/

Accessed: 25/05/2017

Campbell, R., Billing, N., Northcote, K., Hubble, G., Isbell, R., Thompson, C., and Bettenay, E., (1975), *A description of Australian Soils*, Canberra: C.S.I.R.O. Division of Soils.

Chinnock, R.J., (2007), *Eremophila and allied Genera – A Monograph of the Myoporaceae*, Rosenberg Publishing Pty. Ltd. NSW.

Cousens, R.D., Dodd, J., Lloyd, S.G., Hussey, B.M.J., and Keighery, G.J. (1997), *Western Weeds – A guide to weeds of Western Australia*, The Plant Protection society of Western Australia, Victoria Park

Cowan, M. & Kendrick, P., (2001), A Biodiversity Audit of Western Australia's 53 Biogeographical Region in 2001- Little Sandy Desert 2 (LSD2 – Trainor subregion), Department of Conservation and Land Management.

DAFWA (2011), *Pre-European Vegetation - Western Australia (NVIS Compliant Version GIS file)*, Department of Agriculture and Food Western Australia.

DAFWA (2014), Soil Landscape System of Western Australia, Department of Agriculture and Food Western Australia.

DAFWA (2017), *Declared Organism-database search*, Department of Agriculture and Food Western Australia.

http://www.biosecurity.wa.gov.au/

Accessed: 25/01/2017

DotEE, (2012), *Interim Biogeographic Regionalisation for Australia (IBRA)*, Version 7, Department of the Environment and Energy

DotEE, (2016a), Protected Matters Search Tool, Environment Protection and Biodiversity Conservation Act 1999, Department of the Environment

DotEE, (2016b), National Vegetation Information System (NVIS) Major Vegetation Groups, Version 4.2, Department of the Environment and Energy

DPaW, (2012a), *Threatened and Priority Flora Database search results*, Department of Parks and Wildlife

DPaW, (2012b), *Threatened Ecological Community and Priority Ecological Community database search*, Department of Parks and Wildlife

DPaW (2015a), 2015 Statewide Vegetation Statistics (formerly the CAR Reserve Analysis). Department of Parks and Wildlife

DPaW (2016a), NatureMap Database search, Department of Parks and Wildlife.

DPaW (2016b), *Priority Ecological Communities for Western Australia Version 26.* Species and Communities Branch, Department of Parks and Wildlife (released 30th November 2016).

DPaW & EPA (2016), *Technical Guide - Terrestrial Flora and Vegetation Surveys for Environmental Impact Assessment – December 2016.* Department of Parks and Wildlife & Environmental Protection Authority.

IUCN (2016a), *The IUCN Red List of Threatened Species. Version 2016-3*. International Union for Conservation of Nature.

IUCN, (2016b), The IUCN Red List of Ecosystems. International Union for Conservation of Nature

Kendrick, P., (2001a), A Biodiversity Audit of Western Australia's 53 Biogeographical Region in 2001-Little Sandy Desert 1 (LSD1 –Rudall subregion), Department of Conservation and Land Management

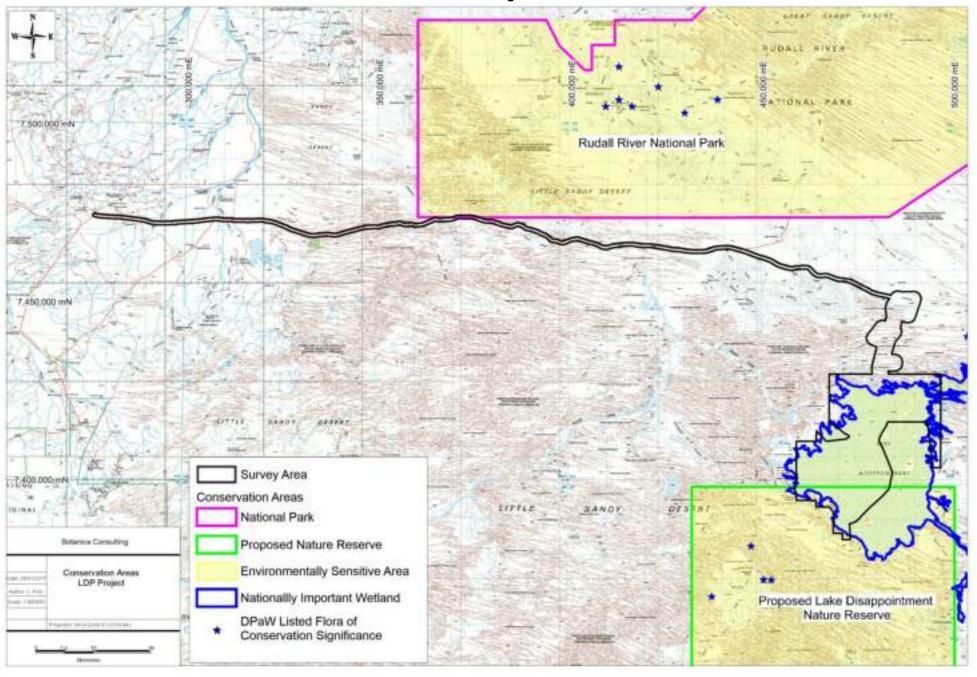
Kendrick, P., (2001b), A Biodiversity Audit of Western Australia's 53 Biogeographical Region in 2001-Pilbara 2 (PIL2 –Fortescue Plains subregion), Department of Conservation and Land Management

Kendrick, P. & McKenzie, N, (2001), A Biodiversity Audit of Western Australia's 53 Biogeographical Region in 2001- Pilbara 1 (PIL1 -Chichester subregion), Department of Conservation and Land Management

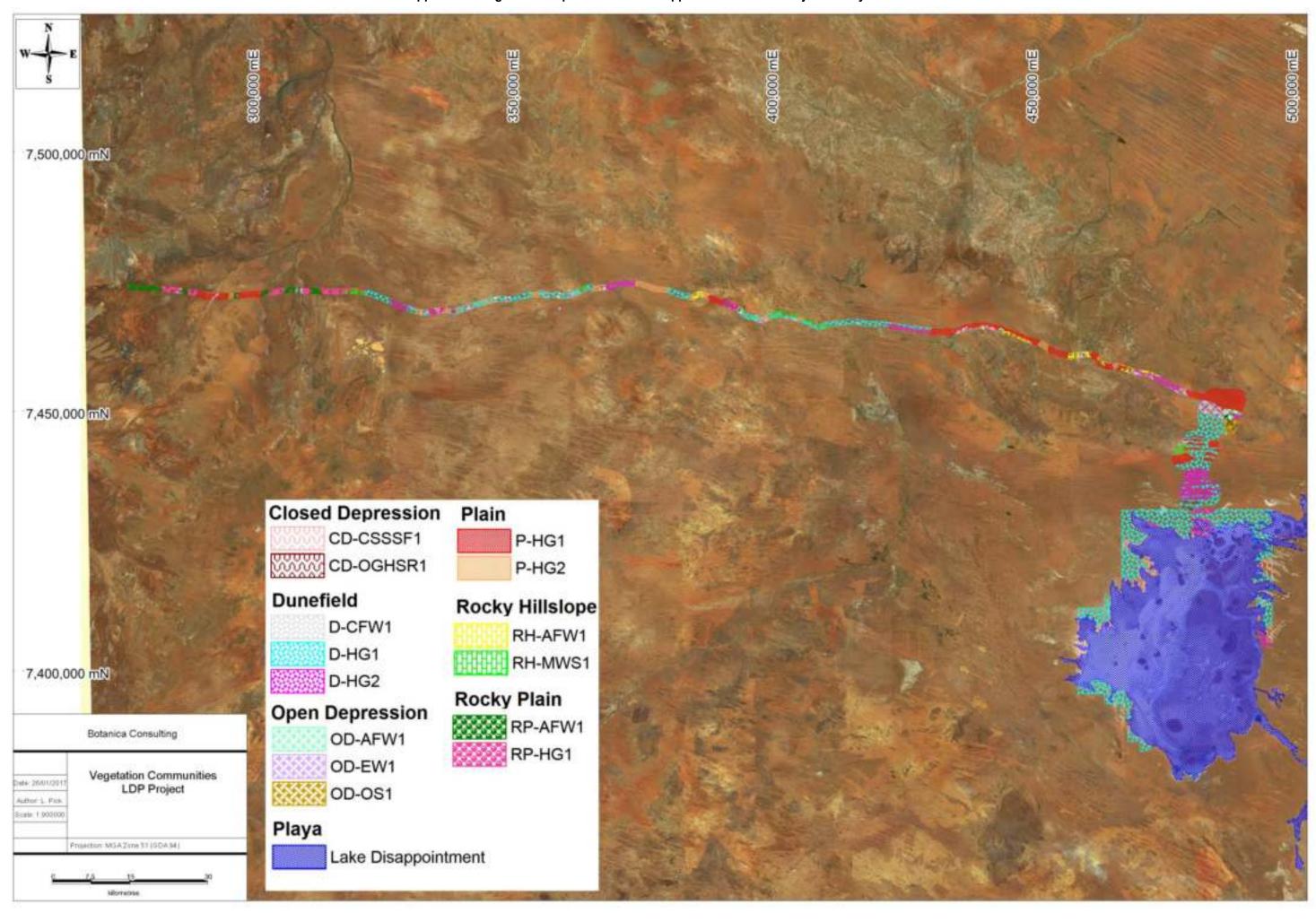
Lynch, R. J (1995), *Directory of Important Wetlands in Australia - Information sheet Lake Disappointment (Savory Creek) System - WA052.* c/- Department of Conservation and Land Management, Busselton. July- October 1995.

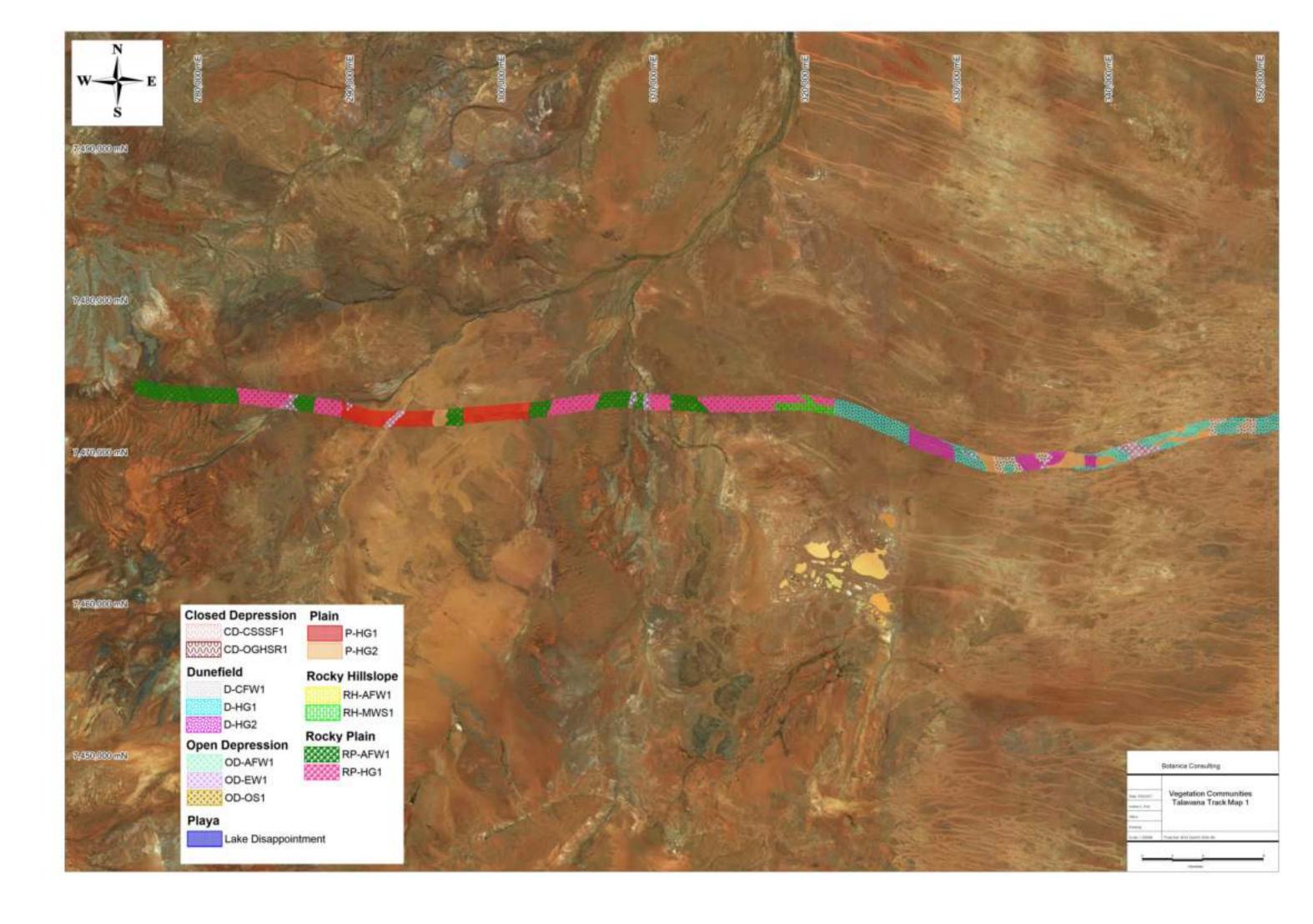
McKenzie, N.L., May J.E. and McKenna, S, (2002) *Bioregional Summary of the 2002 Biodiversity Audit for Western Australia.*

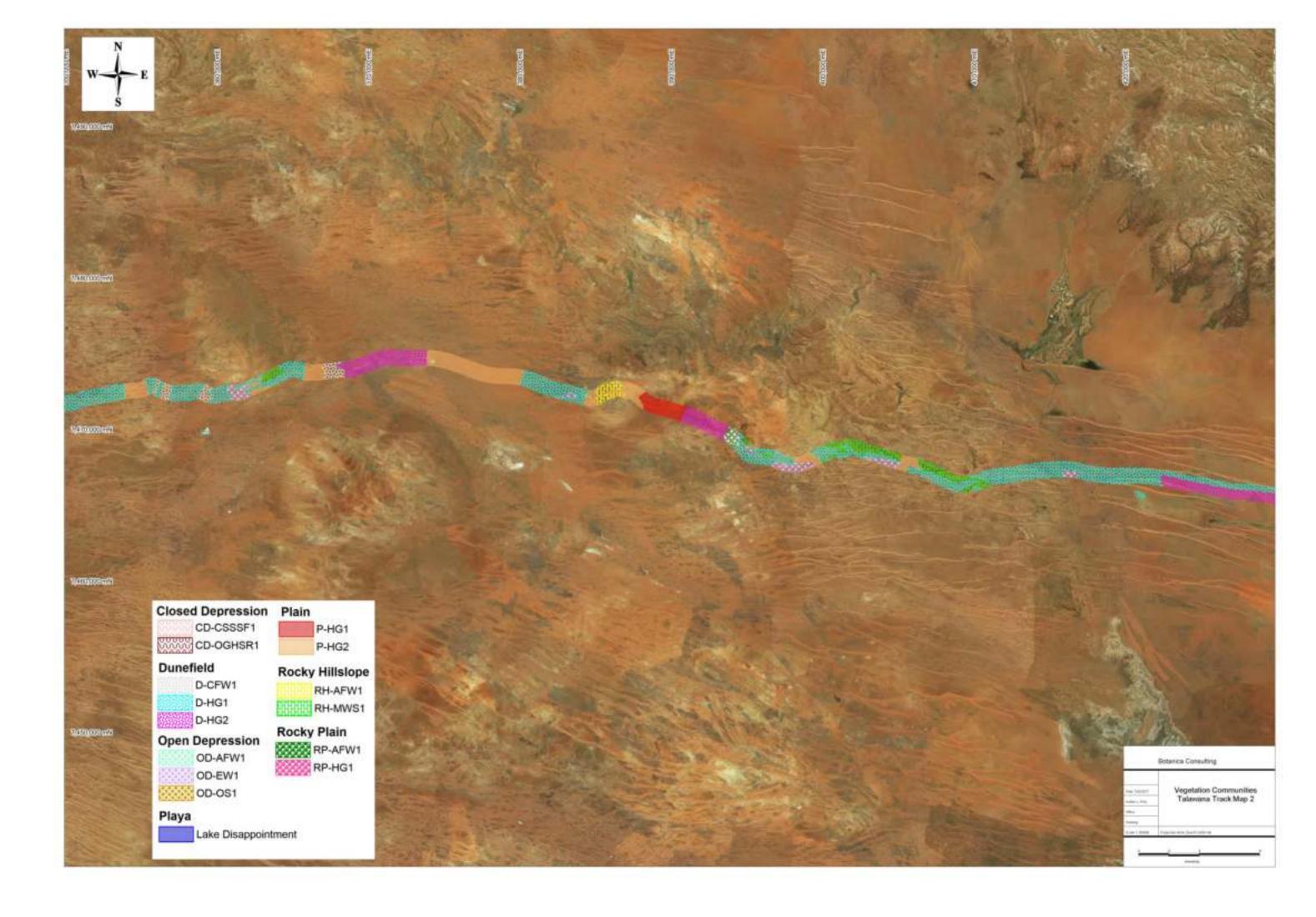
Mc Donald, R.C, Isbell, R.F & Speight, J.G (1998), Australian Soil and Land Survey Field Handbook (3rd edn). CSIRO Publishing: Melbourne.

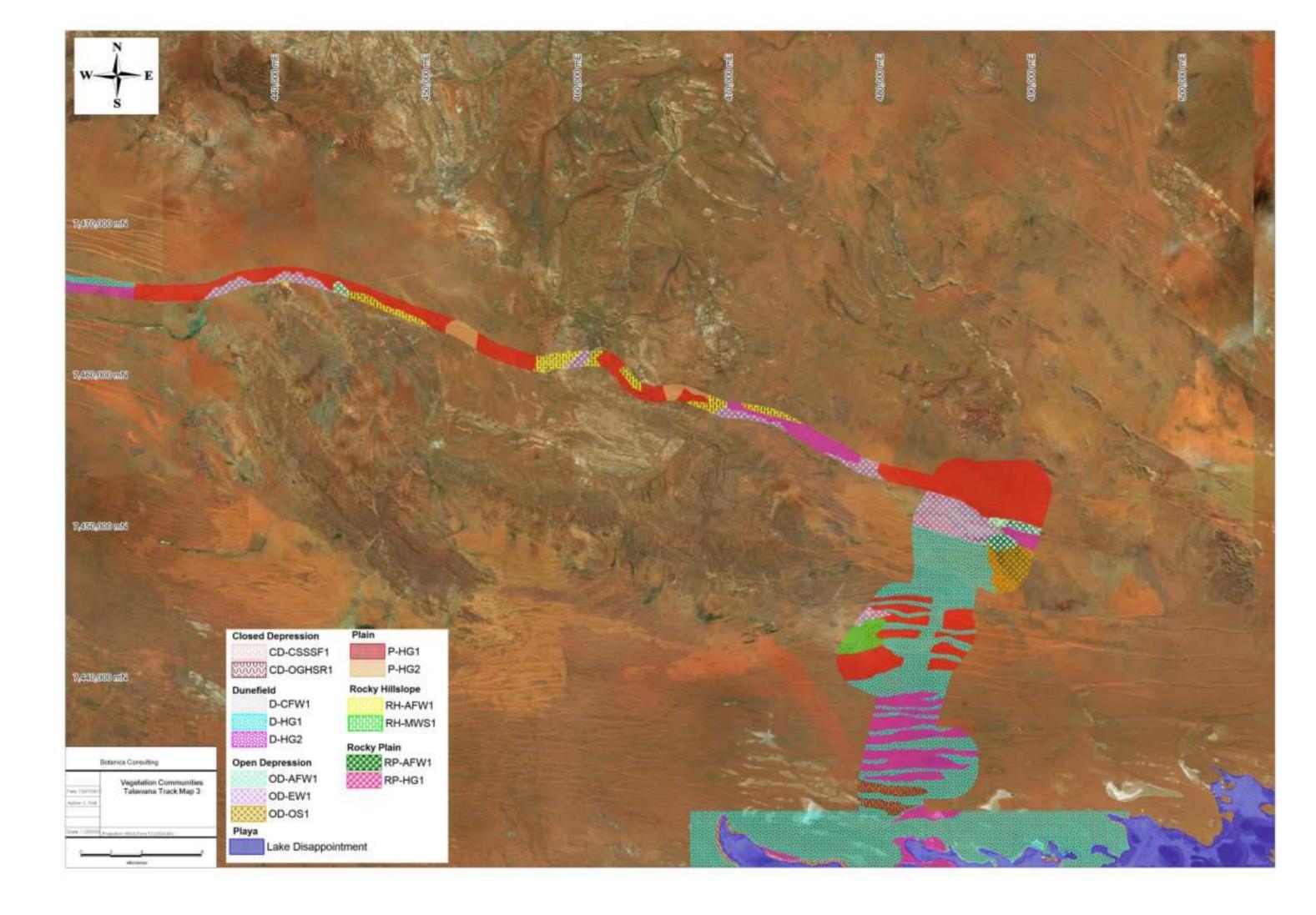

Tille, P. (2006), *Soil Landscapes of Western Australia's Rangelands and Arid Interior*, Department of Agriculture and Food Western Australia.

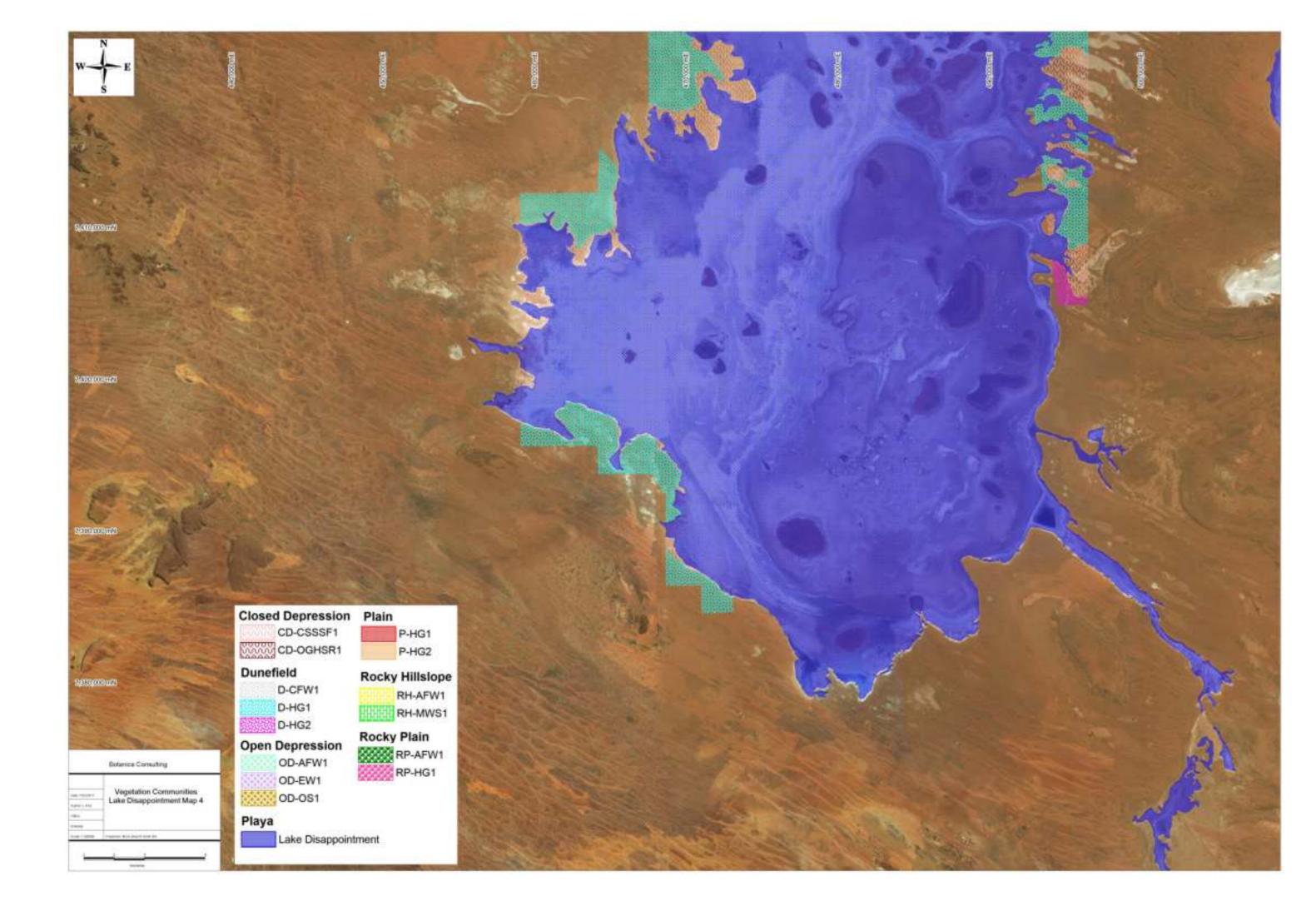
WAHERB, (2017), Florabase – Information on the Western Australian Flora, Department of Parks and Wildlife


http://florabase.dpaw.wa.gov.au


Accessed 31/05/2017


Appendix 1: Regional map of the Lake Disappointment Potash Project survey area including DPaW Flora of Conservation Significance and areas of Conservation Significance




Appendix 2: Vegetation maps of the Lake Disappointment Potash Project survey area

Appendix 3: List of species identified within each vegetation community.

(A) Blue text Denotes Annual species; (W) Green text Denotes Introduced species; (P/CS) Red text Denotes Flora of Conservation Significance

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Aizoaceae	Trianthema	glossostigmum (A)													*	
Aizoaceae	Trianthema	pilosum (A)				*	*		*							
Aizoaceae	Trianthema	turgidifolium (A)		*	*	*										
Amaranthaceae	Achyranthes	aspera				*	*									
Amaranthaceae	Alternanthera	angustifolia (A)						*								
Amaranthaceae	Alternanthera	nodiflora (A)		*												
Amaranthaceae	Amaranthus	cuspidifolius							*							
Amaranthaceae	Gomphrena	affinis subsp. pilbarensis (A)	*				*									
Amaranthaceae	Gomphrena	cunninghamii (A)				*	*				*					*
Amaranthaceae	Gomphrena	kanisii (A)				*									*	
Amaranthaceae	Gomphrena	sordida (A)					*									
Amaranthaceae	Ptilotus	arthrolasius				*										
Amaranthaceae	Ptilotus	astrolasius				*	*				*			*		
Amaranthaceae	Ptilotus	axillaris (A)					*									
Amaranthaceae	Ptilotus	calostachyus					*		*		*	*		*		
Amaranthaceae	Ptilotus	clementii (A)					*									
Amaranthaceae	Ptilotus	fusiformis (A)						*	*	*						
Amaranthaceae	Ptilotus	helipteroides (A)					*				*					*
Amaranthaceae	Ptilotus	latifolius				*										
Amaranthaceae	Ptilotus	macrocephalus (A)					*	*								
Amaranthaceae	Ptilotus	nobilis (A)												*		
Amaranthaceae	Ptilotus	obovatus					*	*	*						*	*
Amaranthaceae	Ptilotus	polystachyus (A)				*	*		*		*					
Amaranthaceae	Ptilotus	sp. (sterile)				*	*									
Amaranthaceae	Surreya	diandra	*	*			*									
Asphodelaceae	Bulbine	pendula (A)		*			*									
Asteraceae	Angianthus	milnei (A)				*	*									

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Asteraceae	Angianthus	tomentosus (A)	*			*	*									
Asteraceae	Calocephalus	knappii (A)		*			*		*							
Asteraceae	Calocephalus	multiflorus (A)		*												
Asteraceae	Centipeda	minima subsp. macrocephala (A)						*								
Asteraceae	Chrysocephalum	eremaeum				*	*		*		*					
Asteraceae	Pluchea	rubelliflora		*		*	*				*					
Asteraceae	Podolepis	gardneri (A)				*										
Asteraceae	Pterocaulon	sphacelatum							*		*					
Asteraceae	Rhodanthe	floribunda (A)						*								
Asteraceae	Streptoglossa	decurrens		*		*	*		*	*	*		*	*		*
Asteraceae	Streptoglossa	macrocephala	*			*	*	*	*		*					
Boraginaceae	Halgania	solanacea var. solanacea			*	*	*	*			*	*	*	*	*	*
Boraginaceae	Heliotropium	glabellum (A)							*					*		
Boraginaceae	Heliotropium	glanduliferum				*	*									
Boraginaceae	Heliotropium	transforme			*	*	*			*	*		*			
Boraginaceae	Trichodesma	zeylancium (A)				*	*		*		*					
Brassicaceae	Lepidium	oxytrichum (A)					*									
Brassicaceae	Lepidium	pholidogynum (A)		*												
Caryophyllaceae	Polycarpaea	corymbosa (A)						*							*	*
Casuarinaceae	Allocasuarina	decaisneana			*	*	*									
Chenopodiaceae	Atriplex	vesicaria	*	*		*	*									
Chenopodiaceae	Dysphania	kalpari (A)				*			*						*	
Chenopodiaceae	Dysphania	plantaginella (A)					*	*			*				*	
Chenopodiaceae	Dysphania	rhadinostachya (A)					*						*			
Chenopodiaceae	Eremophea	spinosa				*										
Chenopodiaceae	Maireana	carnosa					*								7	
Chenopodiaceae	Maireana	georgei	*								*		*	*		
Chenopodiaceae	Maireana	integra					*									
Chenopodiaceae	Maireana	luehmannii	*	*												
Chenopodiaceae	Maireana	tomentosa		*												

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Chenopodiaceae	Maireana	triptera	*										*			
Chenopodiaceae	Rhagodia	eremaea							*		*					
Chenopodiaceae	Salsola	australis (A)				*	*	*								
Chenopodiaceae	Sclerolaena	cornishiana (A)				*	*								*	
Chenopodiaceae	Sclerolaena	cuneata	*	*			*								*	
Chenopodiaceae	Sclerolaena	densiflora		*			*									
Chenopodiaceae	Sclerolaena	diacantha		*												
Chenopodiaceae	Sclerolaena	eriacantha					*									
Chenopodiaceae	Sclerolaena	fimbriolata	*													
Chenopodiaceae	Tecticornia	aff. calyptrata (CS)	*													
Chenopodiaceae	Tecticornia	auriculata	*													
Chenopodiaceae	Tecticornia	indica subsp. bidens	*													
Chenopodiaceae	Tecticornia	sp. (sterile) 1	*													
Chenopodiaceae	Tecticornia	sp. (sterile) 2	*													
Chenopodiaceae	Tecticornia	sp. (sterile) 3	*													
Chenopodiaceae	Tecticornia	sp. (sterile) 4	*													
Chenopodiaceae	Tecticornia	sp. nov. A (CS)	*													
Chenopodiaceae	Tecticornia	sp. nov. B (CS)	*													
Chenopodiaceae	Tecticornia	sp. Sunshine Lake (K.A. Shepherd et al KS 867) (P1)	*													
Chenopodiaceae	Tecticornia	verrucosa (A)		*												
Cleomaceae	Cleome	uncifera subsp. microphylla				*	*		*							
Cleomaceae	Cleome	uncifera subsp. uncifera				*			*		*					
Cleomaceae	Cleome	viscosa (A)				*		*	*		*					*
Convolvulaceae	Bonamia	erecta	*		*	*	*	*	*	*	*	*	*	*		
Convolvulaceae	Evolvulus	alsinoides var. villosicalyx				*	*	*	*		*					*
Convolvulaceae	Ipomoea	muelleri							*							
Cucurbitaceae	Cucumis	variabilis (A)			*	*			*		*					
Cyperaceae	Bulbostylis	barbata (A)						*	*						*	*
Cyperaceae	Bulbostylis	turbinata (A)		*		*	*		*		*	*			*	

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Cyperaceae	Cyperus	blakeanus								*						
Cyperaceae	Cyperus	bulbosus				*										
Cyperaceae	Cyperus	cunninghamii subsp. cunninghamii							*		*					
Cyperaceae	Cyperus	iria (A)						*	*							
Cyperaceae	Cyperus	squarrosus (A)				*										
Cyperaceae	Fimbristylis	dichotoma							*	*						
Cyperaceae	Fimbristylis	eremophila				*	*		*	*	*		*			
Cyperaceae	Lipocarpha	microcephala (A)		*												
Droseraceae	Drosera	indica (A)		*												
Euphorbiaceae	Euphorbia	australis(A)							*							
Euphorbiaceae	Euphorbia	drummondii (A)				*	*		*		*				*	
Euphorbiaceae	Euphorbia	tannensis (A)				*					*					*
Euphorbiaceae	Euphorbia	tannensis subsp. eremophila (A)			*	*										
Fabaceae	Acacia	abrupta							*		*					
Fabaceae	Acacia	adsurgens				*			*		*					
Fabaceae	Acacia	ancistrocarpa			*	*	*	*	*		*			*	*	*
Fabaceae	Acacia	aptaneura				*	*	*	*		*				*	*
Fabaceae	Acacia	balsamea											*	*		*
Fabaceae	Acacia	bivenosa			*	*	*		*	*	*	*	*	*	*	*
Fabaceae	Acacia	colei							*						*	
Fabaceae	Acacia	cuthbertsonii subsp. cuthbertsonii	*				*								*	
Fabaceae	Acacia	dictyophleba				*					*					
Fabaceae	Acacia	eriopoda				*	*		*		*					
Fabaceae	Acacia	hilliana					*					*	*	*		
Fabaceae	Acacia	inaequilatera					*							*		
Fabaceae	Acacia	incurvaneura					*	*								
Fabaceae	Acacia	kempeana													*	
Fabaceae	Acacia	ligulata			*	*	*	*	*		*	*		*	*	
Fabaceae	Acacia	maitlandii				*	*		*		*					*
Fabaceae	Acacia	melleodora			*	*	*		*		*			*		*

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Fabaceae	Acacia	monticola							*		*					
Fabaceae	Acacia	pachycarpa						*	*				*		*	
Fabaceae	Acacia	paraneura													*	
Fabaceae	Acacia	prainii				*	*									*
Fabaceae	Acacia	pruinocarpa					*		*		*				*	*
Fabaceae	Acacia	pyrifolia var. pyrifolia					*		*		*					
Fabaceae	Acacia	retivenea subsp. clandestina												*		
Fabaceae	Acacia	sabulosa				*	*									
Fabaceae	Acacia	sclerosperma subsp. sclerosperma							*							
Fabaceae	Acacia	spondylophylla							*		*			*		
Fabaceae	Acacia	tetragonophylla					*									*
Fabaceae	Acacia	victoriae		*		*	*		*						*	
Fabaceae	Cullen	martinii							*		*					
Fabaceae	Cullen	stipulaceum							*		*	*				
Fabaceae	Gompholobium	polyzygum				*	*				*	*				*
Fabaceae	Gompholobium	simplicifolium				*										*
Fabaceae	Gompholobium	simplicifolium				*	*									
Fabaceae	Indigofera	colutea (A)							*							
Fabaceae	Indigofera	georgei					*		*		*				*	
Fabaceae	Indigofera	monophylla							*							
Fabaceae	Isotropis	atropurpurea							*		*					
Fabaceae	Jacksonia	aculeata			*	*	*		*		*	*		*		
Fabaceae	Kennedia	prorepens			*											
Fabaceae	Leptosema	chambersii			*	*			*	*	*	*				
Fabaceae	Petalostylis	cassioides				*	*				*	*		*		*
Fabaceae	Petalostylis	labicheoides				*	*				*			*		*
Fabaceae	Senna	artemisioides subsp. helmsii			*	*	*	*	*					*	*	*
Fabaceae	Senna	artemisioides subsp. oligophylla					*		*		*					*
Fabaceae	Senna	artemisioides subsp. sturtii		*			*		*		*					
Fabaceae	Senna	artemisioides subsp. x artemisioides											*			

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Fabaceae	Senna	artemisioides subsp. x coriacea									*			*		
Fabaceae	Senna	glutinosa subsp. chatelainiana												*	*	*
Fabaceae	Senna	notabilis				*	*		*		*				*	
Fabaceae	Senna	sericea							*					*		
Fabaceae	Senna	stricta							*					*		*
Fabaceae	Sesbania	cannabina (A)													*	
Fabaceae	Swainsona	aff. microphylla							*							
Fabaceae	Swainsona	microphylla				*	*									
Fabaceae	Tephrosia	rosea				*	*		*		*					
Fabaceae	Thinicola	incana				*	*									
Frankeniaceae	Frankenia	cinerea	*	*		*	*									
Gentianaceae	Schenkia	clementii	*	*			*									
Goodeniaceae	Brunonia	australis				*	*		*		*					
Goodeniaceae	Dampiera	candicans							*		*					
Goodeniaceae	Dampiera	cinerea				*										
Goodeniaceae	Goodenia	armitiana	*		*		*		*		*	*				
Goodeniaceae	Goodenia	microptera (A)				*	*					*				*
Goodeniaceae	Goodenia	prostrata (A)				*									*	*
Goodeniaceae	Scaevola	basedowii					*				*					
Goodeniaceae	Scaevola	collaris	*		*	*	*		*		*					
Goodeniaceae	Scaevola	parvifolia subsp. parvifolia			*	*	*		*		*	*				
Goodeniaceae	Scaevola	sericophylla	*			*	*									
Goodeniaceae	Scaevola	spinescens											*	*	*	
Goodeniaceae	Velleia	discophora			*	*			*		*			*		
Goodeniaceae	Velleia	panduriformis				*	*									
Gyrostemonaceae	Codonocarpus	cotinifolius					*									
Gyrostemonaceae	Gyrostemon	tepperi			*	*										
Haloragaceae	Glischrocaryon	angustifolium				*	*									
Haloragaceae	Haloragis	gossei (A)							*			*				
Hemerocallidaceae	Corynotheca	micrantha var. divaricata				*	*				*					

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Lamiaceae	Clerodendrum	tomentosum var. lanceolatum	*			*			*							
Lamiaceae	Dicrastylis	beveridgei				*	*		*		*					
Lamiaceae	Dicrastylis	cordifolia							*	*	*			*		
Lamiaceae	Dicrastylis	doranii			*	*	*			*	*	*				
Lamiaceae	Dicrastylis	exsuccosa			*	*	*		*	*	*					
Lamiaceae	Newcastelia	bracteosa				*	*									
Lamiaceae	Newcastelia	cladotricha				*										
Lamiaceae	Newcastelia	cladotricha				*										
Lamiaceae	Newcastelia	roseoazurea				*	*		*		*					
Lamiaceae	Newcastelia	spodiotricha				*										
Lamiaceae	Quoya	loxocarpa				*			*		*					
Lauraceae	Cassytha	capillaris				*	*		*					*		
Loranthaceae	Amyema	preissii						*								
Lythraceae	Ammannia	multiflora (A)		*												
Malvaceae	Abutilon	cryptopetalum							*							
Malvaceae	Abutilon	lepidum	*			*	*	*								
Malvaceae	Abutilon	macrum						*								
Malvaceae	Abutilon	otocarpum	*					*	*		*					*
Malvaceae	Abutilon	sp. (sterile)				*										
Malvaceae	Alyogyne	pinoniana			*	*	*		*		*					*
Malvaceae	Androcalva	luteiflora							*		*					
Malvaceae	Corchorus	sidoides subsp. sidoides				*										
Malvaceae	Corchorus	sp. (sterile)														*
Malvaceae	Corchorus	tridens (A)						*								
Malvaceae	Corchorus	walcottii				*	*	*	*		*	*				
Malvaceae	Hibiscus	burtonii				*	*		*							
Malvaceae	Hibiscus	leptocladus							*		*					
Malvaceae	Hibiscus	sturtii var. platychlamys				*	*		*		*					
Malvaceae	Lawrencia	cinerea	*			*										
Malvaceae	Lawrencia	densiflora			*	*	*									

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Malvaceae	Lawrencia	glomerata	*													
Malvaceae	Seringia	elliptica							*	*	*	*	*	*		
Malvaceae	Sida	?cardiophylla				*	*		*		*					
Malvaceae	Sida	brownii				*		*	*		*					
Malvaceae	Sida	calyxhymenia							*		*			*		
Malvaceae	Sida	cardiophylla				*	*				*					
Malvaceae	Sida	fibulifera									*			*		
Malvaceae	Sida	platycalyx (A)						*		*					*	
Malvaceae	Sida	sp. (sterile)					*									
Malvaceae	Sida	sp. Excedentifolia (J.L. Egan 1925)							*		*	*	*	*		
Malvaceae	Sida	sp. Golden calyces glabrous (H.N. Foote 32)			*		*									*
Malvaceae	Sida	sp. sand dunes (A.A. Mitchell PRP1208)			*	*	*		*	*	*					
Malvaceae	Sida	sp. spiciform panicles (E. Leyland s.n. 14/8/90)				*										
Malvaceae	Sida	sp. tiny glabrous fruit (A.A. Mitchell PRP 1208)							*							
Malvaceae	Sida	sp. verrucose glands (F.H. Mollemans 2423)						*								
Malvaceae	Triumfetta	chaetocarpa							*		*					
Malvaceae	Triumfetta	maconochieana					*		*		*					*
Malvaceae	Waltheria	virgata							*		*					
Marsileaceae	Marsilea	hirsuta						*								
Molluginaceae	Trigastrotheca	molluginea (A)							*						*	
Myrtaceae	Aluta	maisonneuvei subsp. maisonneuvei			*	*	*									
Myrtaceae	Calytrix	carinata			*	*	*		*		*	*	*	*		*
Myrtaceae	Corymbia	aspera				*			*		*				*	*
Myrtaceae	Corymbia	opaca				*			*		*				*	
Myrtaceae	Corymbia	sp. (sterile)				*	*									
Myrtaceae	Eucalyptus	camaldulensis						*	*							

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Myrtaceae	Eucalyptus	camaldulensis subsp. obtusa							*							
Myrtaceae	Eucalyptus	gamophylla										*		*		
Myrtaceae	Eucalyptus	kingsmillii subsp. kingsmillii							*		*	*		*		
Myrtaceae	Eucalyptus	sp (sterile)				*	*								*	
Myrtaceae	Lamarchea	sulcata										*				
Myrtaceae	Melaleuca	glomerata		*	*		*			*						
Myrtaceae	Melaleuca	lasiandra					*		*							
Myrtaceae	Thryptomene	naviculata				*										
Nyctaginaceae	Boerhavia	coccinea						*	*							
Orobanchaceae	Buchnera	linearis (A)					*									
Phrymaceae	Glossostigma	diandrum (A)		*												
Phrymaceae	Mimulus	uvedaliae var. uvedaliae (A)		*												
Plantaginaceae	Stemodia	linophylla							*	*	*					
Plantaginaceae	Stemodia	viscosa						*	*		*					
Poaceae	Aristida	contorta (A)		*			*	*								*
Poaceae	Aristida	holathera var. holathera (A)			*	*	*		*	*	*			*		
Poaceae	Aristida	ingrata			*	*		*	*	*	*		*		*	
Poaceae	Cenchrus	ciliaris (W)						*	*		*			*	*	*
Poaceae	Cymbopogon	ambiguus							*		*					
Poaceae	Enneapogon	purpurascens (A)					*									
Poaceae	Eragrostis	cumingii (A)				*										
Poaceae	Eragrostis	dielsii (A)	*	*				*								
Poaceae	Eragrostis	eriopoda				*	*		*		*	*			*	
Poaceae	Eragrostis	falcata	*			*	*									
Poaceae	Eragrostis	leptocarpa (A)				*										
Poaceae	Eragrostis	pergracilis (A)	*	*		*	*									*
Poaceae	Eragrostis	sp. (sterile) (A)				*	*									
Poaceae	Eragrostis	tenellula (A)						*								
Poaceae	Eriachne	aristidea (A)		*		*	*	*	*		*				*	
Poaceae	Eriachne	helmsii													*	*

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Poaceae	Eriachne	pulchella (A)		*			*				*		*	*	*	*
Poaceae	Paractaenum	refractum (A)				*										
Poaceae	Paraneurachne	muelleri		*		*		*	*		*	*	*	*		
Poaceae	Paspalidium	clementii (A)						*								
Poaceae	Paspalidium	jubiflorum							*							
Poaceae	Paspalidium	rarum (A)						*								
Poaceae	Sporobolus	australasicus (A)														*
Poaceae	Themeda	triandra							*							
Poaceae	Tragus	australianus (A)		*			*									
Poaceae	Triodia	basedowii	*		*	*	*	*	*	*	*	*		*	*	*
Poaceae	Triodia	melvillei				*	*		*		*					*
Poaceae	Triodia	pungens				*	*		*		*	*	*	*		*
Poaceae	Triodia	schinzii			*	*	*					*				
Poaceae	Triodia	sp. (sterile)				*	*									
Poaceae	Yakirra	australiensis (A)				*										
Portulaceae	Calandrinia	pleiopetala (A)		*		*	*	*								
Portulaceae	Calandrinia	pumila (A)						*		*						
Portulaceae	Calandrinia	quadrivalvis (A)				*										
Portulaceae	Portulaca	oleracea (A)		*			*	*							*	
Portulaceae	Portulaca	sp. (sterile) (A)														*
Proteaceae	Grevillea	berryana									*				*	
Proteaceae	Grevillea	eriostachya				*	*					*	*			
Proteaceae	Grevillea	juncifolia subsp. juncifolia			*	*	*		*		*					
Proteaceae	Grevillea	sp. (sterile)				*									*	
Proteaceae	Grevillea	stenobotrya					*				*					
Proteaceae	Grevillea	wickhamii subsp. aprica							*		*					*
Proteaceae	Grevillea	wickhamii subsp. wickhamii				*	*		*		*	*		*	*	*
Proteaceae	Hakea	lorea			*	*	*			*	*	*		*		*
Proteaceae	Hakea	rhombales				*	*		*		*				*	
Pteridaceae	Cheilanthes	sieberi subsp. sieberi						*							*	

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Rubiaceae	Oldenlandia	pterospora				*										
Rubiaceae	Pomax	sp. desert (A.S. George 11968)					*									
Rubiaceae	Psydrax	latifolia						*	*		*				*	*
Santalaceae	Anthobolus	leptomerioides				*			*		*	*	*		*	*
Santalaceae	Exocarpos	sparteus			*											
Santalaceae	Santalum	lanceolatum							*							
Sapindaceae	Diplopeltis	stuartii var. stuartii				*			*		*	*				
Sapindaceae	Dodonaea	coriacea					*									
Scrophulariaceae	Eremophila	compacta													*	*
Scrophulariaceae	Eremophila	exilifolia											*		*	*
Scrophulariaceae	Eremophila	forrestii subsp. forrestii				*	*		*		*					
Scrophulariaceae	Eremophila	gilesii subsp. variabilis													*	
Scrophulariaceae	Eremophila	glutinosa												*		
Scrophulariaceae	Eremophila	lanceolata						*								
Scrophulariaceae	Eremophila	latrobei subsp. filiformis				*	*		*		*					
Scrophulariaceae	Eremophila	<i>latrobei</i> subsp. <i>glabra</i>													*	
Scrophulariaceae	Eremophila	latrobei subsp. latrobei						*								*
Scrophulariaceae	Eremophila	phyllopoda subsp. phyllopoda												*		
Scrophulariaceae	Eremophila	platycalyx subsp. platycalyx									*					
Scrophulariaceae	Eremophila	platythamnos subsp. exotrachys				*	*									
Scrophulariaceae	Eremophila	tietkensii			*	*	*									
Solanaceae	Anthotroche	pannosa				*										
Solanaceae	Solanum	centrale				*	*	*			*			*		
Solanaceae	Solanum	chippendalei				*	*		*		*					
Solanaceae	Solanum	diversiflorum		*			*		*		*					
Solanaceae	Solanum	lasiophyllum				*		*	*		*				*	*
Stylidiaceae	?Levenhookia	chippendalei (A)		*												
Stylidiaceae	Stylidium	desertorum (A)		*			*									
Surianaceae	Stylobasium	spathulatum			*		*		*		*	*				
Violaceae	Hybanthus	aurantiacus							*		*					

Family	Genus	Taxon	CD-CSSSF1	CD-OGHSR1	D-CFW1	D-HG1	D-HG2	OD-AFW1	OD-EW1	0D-0S1	P-HG1	P-HG2	RH-AFW1	RH-MWS1	RP-AFW1	RP-HG1
Zygophyllaceae	Tribulus	hirsutus									*					
Zygophyllaceae	Tribulus	macrocarpus (A)													*	
Zygophyllaceae	Tribulus	occidentalis				*	*	*			*					
Zygophyllaceae	Tribulus	platypterus				*	*		*		*			*		
Zygophyllaceae	Tribulus	suberosus												*		

Appendix 4: GPS coordinates of Flora of Conservation Significance locations within Lake Disappointment Potash Project survey area (GDA94)

Taxon	Zone	Easting	Northing	Estimated No. plants
Tecticornia aff. calyptrata	51K	471030	7426837	1
Tecticornia aff. calyptrata	51K	481449	7425674	1
Tecticornia aff. calyptrata	51K	460087	7400035	32
Tecticornia aff. calyptrata	51K	462090	7396055	48
Tecticornia aff. calyptrata	51K	465641	7395379	60
Tecticornia aff. calyptrata	51K	472752	7385855	141
Tecticornia aff. calyptrata	51K	469195	7423628	40
Tecticornia aff. calyptrata	51K	471096	7415895	76
Tecticornia aff. calyptrata	51K	465665	7413430	100
Tecticornia aff. calyptrata	51K	494020	7420833	1
Tecticornia aff. calyptrata	51K	494020	7420833	2
Tecticornia aff. calyptrata	51K	462229	7409696	11
Tecticornia aff. calyptrata	51 K	471635	7420533	1
Tecticornia aff. calyptrata	51 K	477487	7427605	2
Tecticornia aff. calyptrata	51K	469260	7389353	54
Tecticornia aff. calyptrata	51K	494933	7410651	132
Tecticornia aff. calyptrata	51K	480196	7425142	56
TOTAL				758
Tecticornia sp. nov. A	51K	481449	7425674	1000
Tecticornia sp. nov. A	51K	495316	7426429	500
Tecticornia sp. nov. A	51K	462229	7409696	100
Tecticornia sp. nov. A	51 K	474575	7418716	100
Tecticornia sp. nov. A	51 K	471030	7426837	5
Tecticornia sp. nov. A	51 K	462229	7409696	19
Tecticornia sp. nov. A	51 K	460345	7404680	14
Tecticornia sp. nov. A	51 K	495316	7426429	2
Tecticornia sp. nov. A	51 K	481551	7425640	1
TOTAL				1741
Tecticornia sp. nov. B	51K	472752	7385855	50
Tecticornia sp. nov. B	51K	490874	7427988	500
Tecticornia sp. nov. B	51K	469195	7423628	500
TOTAL				1050
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	471030	7426837	1000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	481449	7425674	10000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	481305	7426165	2000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	460087	7400035	10000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	462090	7396055	5000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	460345	7404680	1000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	465641	7395379	1000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	469260	7389353	1000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	490874	7427988	2000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	469195	7423628	76
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	471096	7415895	10000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	494020	7420833	1000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	495316	7426429	1000
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	462229	7409696	500
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	465686	7413435	91
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	494933	7410651	28
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	474575	7418716	500
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	471635	7420533	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	480196	7425142	36
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	472885	7428119	17

Taxon	Zone	Easting	Northing	Estimated No. plants
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	490874	7427988	No. plants
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51K	472885	7427300	17
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481546	7425647	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481546	7425647	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481547		1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481547	7425641 7425641	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481546	7425635	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425635	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425631	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425629	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543	7425629	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543		1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K		7425625	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	1	481543	7425624	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543	7425623	_
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543	7425620	1 1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481542	7425616	
	51 K	481543	7425612	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425611	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425610	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481542	7425608	1
, , , , , , , , , , , , , , , , , , , ,	51 K	481542	7425606	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543	7425606	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543	7425606	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425604	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481543	7425602	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425601	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425600	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425599	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481545	7425599	1
	51 K	481545	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425597	1
· · · · · · · · · · · · · · · · · · ·	51 K	481544	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481545	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425595	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481544	7425595	1
, , , , , , , , , , , , , , , , , , , ,	51 K	481544	7425594	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481545	7425594	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481546	7425594	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1 Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481554	7425590	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425591	1
, , , , , , , , , , , , , , , , , , , ,	51 K	481553	7425592	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425592	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425593	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425594	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425597	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425599	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425601	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481554	7425602	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425604	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425604	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481551	7425604	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425606	1

Taxon	Zone	Easting	Northing	Estimated No. plants
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425608	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425609	<u>.</u> 1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425610	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425610	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481552	7425612	 1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425612	<u>.</u> 1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425613	<u> </u>
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425613	<u>.</u> 1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481553	7425614	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481554	7425614	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481554	7425614	<u>·</u> 1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481555	7425615	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481554	7425616	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481554	7425616	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425616	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1		481558		1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K		7425615	1
	51 K	481558	7425615	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481559	7425614	
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425614	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425612	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425602	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425600	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481562	7425597	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481562	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481563	7425595	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481563	7425595	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481563	7425594	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481563	7425593	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481564	7425593	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481564	7425592	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481564	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481564	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481564	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481563	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481563	7425590	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481565	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481565	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481565	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481566	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481566	7425592	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481566	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425610	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425607	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425606	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425603	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425603	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481555	7425603	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481555	7425602	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425601	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425600	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481557	7425600	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481558	7425599	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481557	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481557	7425598	1

Taxon	Zone	Easting	Northing	Estimated No. plants
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425597	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425597	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481556	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481557	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481557	7425596	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481558	7425595	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481558	7425594	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481558	7425592	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425591	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425590	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481562	7425589	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481562	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481561	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481559	7425587	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481560	7425588	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425598	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425599	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425600	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425602	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425603	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425603	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425604	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425605	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425605	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425606	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425607	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481549	7425608	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425610	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481548	7425612	1
Tecticornia sp. Sunshine Lake (K.A. Shepherd et al. KS 867) P1	51 K	481555	7425596	1
TOTAL				46,445

Flora of Conservation Significance recorded within the riparian monitoring sites

	Te	ecticorn	ia sp. S	unshin	e Lake	(K.A. Sh	nepherd	l et al K	S 867) (P3)		
Transect	No. plants per 100m² quadrat				No plants along transect (excluding first 10m)				Total			
	2013	2014	2015	2016	2013	2014	2015	2016	2013	2014	2015	2016
T1	72	72	72	72	28	28	28	28	100	100	100	100
T2	32	35	34	34	2	2	2	2	34	37	36	36
T3	0	0	0	0	17	17	17	17	17	17	17	17
T4	46	46	46	42	63	63	63	63	109	109	109	105
T5	40	40	40	37	30	36	36	36	70	76	76	73
T6	40	40	47	70	48	48	48	48	88	88	95	118

	Te	ecticorn	ia sp. S	unshin	e Lake	(K.A. Sh	nepherd	et al K	S 867) (P3)			
Transect	No. plants per 100m² quadrat					No plants along transect (excluding first 10m)				Total			
	2013	2014	2015	2016	2013	2014	2015	2016	2013	2014	2015	2016	
T7	60	60	60	63	31	31	31	31	91	91	91	94	
T8	36	36	36	37	14	22	22	22	50	58	58	59	
T9	38	38	38	38	20	25	25	25	58	63	63	63	
T10	56	56	56	62	40	44	44	44	96	100	100	106	
T11	0	0	0	0	13	14	14	14	13	14	14	14	
T12	44	44	43	35	22	23	23	23	66	67	66	58	
T13	62	62	62	66	37	39	39	39	99	101	101	105	
T14	0	0	0	0	0	0	0	0	0	0	0	0	
T15	0	0	0	0	5	5	3	3	5	5	3	3	
T16	24	24	24	16	4	4	4	3	28	28	28	19	
T17	20	22	23	23	30	31	31	31	50	53	54	54	
T18	64	64	64	60	32	31	31	31	96	95	95	91	
Total	634	639	645	655	436	463	461	460	1070	1102	1106	1115	

	Tecticornia aff. calyptrata (CS)												
Transect	No. plants per 100m² quadrat					No plants along transect (excluding first 10m)				Total			
	2013	2014	2015	2016	2013	2014	2015	2016	2013	2014	2015	2016	
T1	0	0	0	0	0	0	0	0	0	0	0	0	
T2	25	25	25	19	26	26	26	26	51	51	51	45	
Т3	0	0	0	0	0	0	0	0	0	0	0	0	
T4	0	0	0	0	0	0	0	0	0	0	0	0	
T5	2	2	2	2	0	0	0	0	2	2	2	2	
T6	0	0	0	0	0	0	0	0	0	0	0	0	
T7	0	0	0	0	0	0	0	0	0	0	0	0	
Т8	8	8	8	3	3	3	3	3	11	11	11	6	
Т9	0	0	0	0	0	0	0	0	0	0	0	0	
T10	19	19	19	7	13	13	13	10	32	32	32	17	
T11	54	54	54	56	31	31	30	29	85	85	84	85	
T12	53	53	53	21	18	18	18	18	71	71	71	39	
T13	27	27	27	17	31	31	31	31	58	58	58	48	
T14	78	78	78	72	68	68	68	49	146	146	146	121	
T15	7	7	6	6	42	42	40	32	49	49	46	38	
T16	90	90	90	52	11	11	11	8	101	101	101	60	
T17	0	0	0	0	0	0	0	0	0	0	0	0	
T18	0	0	0	0	1	1	1	2	1	1	1	2	
Total	363	363	362	255	244	244	241	208	607	607	603	463	

	Tect	ticornia	sp. nov	/ A (unr	ecognis	sed taxo	on, K.A.	Sheph	erd 867) (CS)		
Transect	No	. plants qua	per 100 drat)m²	No plants along transect (excluding first 10m)				Total			
	2013	2014	2015	2016	2013	2014	2015	2016	2013	2014	2015	2016
T1	0	0	0	0	1	1	1	1	1	1	1	1
T2	0	0	0	0	0	0	0	0	0	0	0	0
T3	0	0	0	0	0	0	0	0	0	0	0	0
T4	0	0	0	0	5	5	5	5	5	5	5	5
T5	0	0	0	0	0	0	0	0	0	0	0	0

	Tect	ticornia	sp. nov	A (unr	ecognis	sed taxo	on, K.A.	Sheph	erd 867) (CS)		
Transect	No. plants per 100m² quadrat			No plants along transect (excluding first 10m)				Total				
	2013	2014	2015	2016	2013	2014	2015	2016	2013	2014	2015	2016
T6	0	0	0	0	0	0	0	0	0	0	0	0
T7	0	0	0	0	0	0	0	0	0	0	0	0
T8	4	4	4	4	15	15	15	15	19	19	19	19
Т9	0	0	0	0	14	14	14	14	14	14	14	14
T10	0	0	0	0	0	0	0	0	0	0	0	0
T11	0	0	0	0	0	0	0	0	0	0	0	0
T12	0	0	0	0	0	0	0	0	0	0	0	0
T13	0	0	0	0	0	0	0	0	0	0	0	0
T14	0	0	0	0	0	0	0	0	0	0	0	0
T15	49	49	37	25	22	22	20	11	71	71	57	36
T16	0	0	0	0	0	0	0	0	0	0	0	0
T17	0	0	0	0	0	0	0	1	0	0	0	1
T18	0	0	0	0	2	2	2	2	2	2	2	2
Total	53	53	41	29	59	59	57	49	112	112	98	78

	Tect	ticornia	sp. nov	/ B (unr	ecogni	sed taxo	on, K.A.	Sheph	erd 867) (CS)			
No. plants per 100m² Transect quadrat						No plants along transect (excluding first 10m)				Total			
	2013	2014	2015	2016	2013	2014	2015	2016	2013	2014	2015	2016	
T1	0	0	0	0	0	0	0	0	0	0	0	0	
T2	0	0	0	0	0	0	0	0	0	0	0	0	
T3	0	0	0	0	0	0	0	0	0	0	0	0	
T4	0	0	0	0	0	0	0	0	0	0	0	0	
T5	0	0	0	0	0	0	0	0	0	0	0	0	
T6	0	0	0	0	0	0	0	0	0	0	0	0	
T7	0	0	0	0	0	0	0	0	0	0	0	0	
T8	0	0	0	0	0	0	0	0	0	0	0	0	
Т9	0	0	0	0	0	0	0	0	0	0	0	0	
T10	0	0	0	0	0	0	0	0	0	0	0	0	
T11	0	0	0	0	0	0	0	0	0	0	0	0	
T12	0	0	0	0	0	0	0	0	0	0	0	0	
T13	0	0	0	0	0	0	0	0	0	0	0	0	
T14	0	0	0	0	0	0	0	0	0	0	0	0	
T15	0	0	0	0	0	0	0	0	0	0	0	0	
T16	0	0	0	0	0	0	0	0	0	0	0	0	
T17	0	0	0	0	0	0	0	0	0	0	0	0	
T18	0	0	0	0	0	0	0	0	0	0	0	0	
Total	0	0	0	0	0	0	0	0	0	0	0	0	

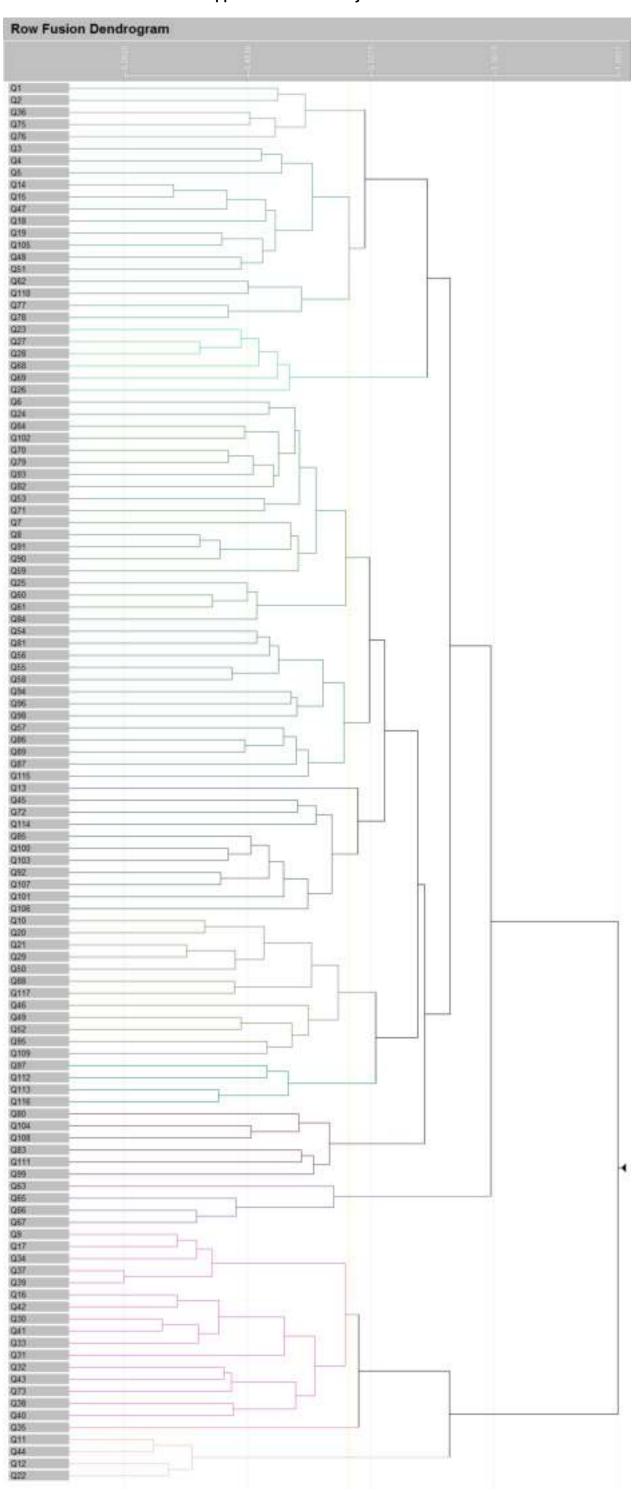
Appendix 5: GPS coordinates of Quadrat locations and Riparian Monitoring Transects (GDA94)

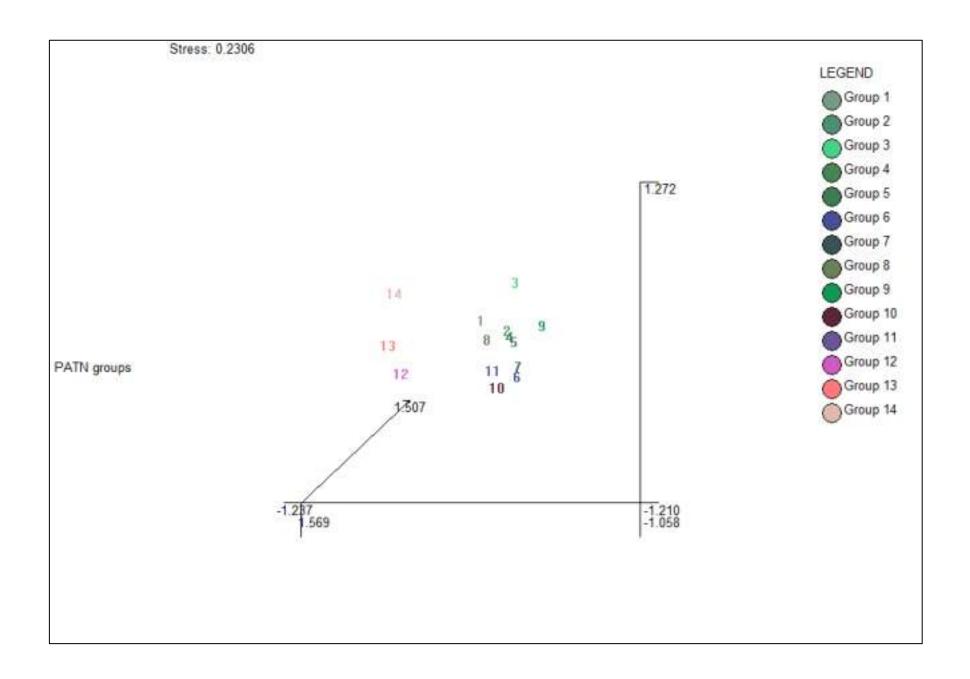
pendix 5: GP	S coordinates of Quadra	t locations		itoring Transects (GDA
Quadrat	Coordinates	Elevation	Precision (m)	Vegetation Type
Q1	51K 480212 7425161	426 m	1	D-HG2
Q2	51K 472900 7428159	430 m	1	D-HG2
Q3	51K 480940 7433494	401 m	1	D-HG1
Q4	51K 482886 7441336	471 m	1	D-HG1
Q5	51K 484430 7448510	408 m	2	D-HG1
Q6	51K 484527 7448010	408 m	1	D-HG1
Q7	51K 484148 7444920	388 m	1	D-HG1
Q8	51K 482493 7439908	377 m	1	D-HG1
Q9	51K 471030 7426837	394 m	3	CD-CSSSF1
Q10	51K 481005 7433944	363 m	2	D-HG2
Q11	51K 480746 7432682	373 m	2	CD-OGHSR1
Q12	51K 480759 7431610	365 m	2	CD-OGHSR1
Q13	51K 481125 7430352	372 m	1	D-HG2
Q14	51K 481202 7429728	352 m	1	D-HG1
Q15	51K 481151 7427926	418 m	1	D-HG1
Q16	51K 481449 7425674	412 m	1	CD-CSSSF1
Q17	51K 481305 7426165	373 m	3	CD-CSSSF1
Q18	51K 477761 7430655	400 m	2	D-HG1
Q19	51K 478664 7427329	398 m	3	D-HG1
Q20	51K 480889 7434121	403 m	1	D-HG2
Q21	51K 481710 7433960	397 m	1	D-HG2
Q22	51K 481008 7431215	396 m	1	CD-OGHSR1
Q23	51K 484061 7450543	403 m	1	OD-EW1
Q24	51K 485308 7451970	428 m	1	P-HG1
Q25	51K 485900 7451484	441 m	1	P-HG1
Q25 Q26	51K 485732 7451067	427 m	1	OD-EW1
Q20 Q27	51K 484602 7450318	420 m	1	
Q27 Q28	51K 484985 7450272	432 m	1	OD-EW1 OD-EW1
Q28 Q29	51K 483760 7434377	470 m	2	D-HG2
Q29 Q30	51K 463700 7434377 51K 460087 7400035	470 m	2	CD-CSSSF1
Q30 Q31	51K 462090 7396055	473 m	2	CD-CSSSF1
Q31 Q32	51K 462090 7396035 51K 460345 7404680		1	CD-CSSSF1
Q32 Q33	51K 465641 7395379	473 m 459 m	2	CD-CSSSF1
			1	
Q34	51K 469260 7389353	454 m	1	CD-CSSSF1
Q35	51K 472752 7385855	480 m		CD-CSSSF1
Q36	51K 494940 7410627	477 m	1	D-HG1
Q37	51K 490874 7427988	493 m	1	CD-CSSSF1
Q38	51K 469195 7423628	496 m	1	CD-CSSSF1
Q39	51K 471096 7415895	335 m	1	CD-CSSSF1
Q40	51K 465665 7413430	332 m	2	CD-CSSSF1
Q41	51K 494020 7420833	319 m	2	CD-CSSSF1
Q42	51K 495316 7426429	328 m	2	CD-CSSSF1
Q43	51K 462229 7409696	330 m	2	CD-CSSSF1
Q44	51 K 479392 7431468	333 m	1	CD-OGHSR1
Q45	51 K 484201 7432359	344 m	1	D-HG1
Q46	51 K 479251 7434048	339 m	1	D-HG2
Q47	51 K 479039 7434344	349 m	1	D-HG1
Q48	51 K 479973 7436233	349 m	1	D-HG1
Q49	51 K 480173 7436997	333 m	1	D-HG2
Q50	51 K 483310 7436231	330 m	1	D-HG2
Q51	51 K 485805 7435241	345 m	2	D-HG1
Q52	51 K 485170 7434956	332 m	1	D-HG2
Q53	51 K 479404 7440180	347 m	1	P-HG1
Q54	51 K 478853 7442047	372 m	1	RH-MWS1
Q55	51 K 478192 7442158	372 m	1	RH-MWS1

Quadrat	Coordinates	Elevation	Precision (m)	Vegetation Type
Q56	51 K 479729 7443185	360 m	2	RH-MWS1
Q57	51 K 479766 7444126	357 m	1	OD-EW1
Q58	51 K 482542 7443592	355 m	1	P-HG1
Q59	51 K 486487 7448278	365 m	1	D-HG1
Q60	51 K 488747 7446620	348 m	2	OD-OS1
Q61	51 K 489605 7448344	349 m	2	OD-OS1
Q62	51 K 489687 7449397	369 m	2	D-HG2
Q63	51 K 489728 7449697	352 m	1	OD-AFW1
Q64	51 K 489219 7452291	364 m	2	P-HG1
Q65	51 K 488489 7450064	355 m	2	OD-AFW1
Q66	51 K 487883 7449091	357 m	2	OD-AFW1
Q67	51 K 487622 7448783	339 m	1	OD-AFW1
Q68	51 K 486538 7448930	359 m	1	OD-AIW1
Q69			1	OD-EW1
	51 K 485585 7449719	368 m	3	
Q70	51 K 486196 7453478	370 m	2	P-HG1
Q71	51 K 484667 7453427	373 m	2	P-HG1
Q72	51 K 483108 7447960	367 m		D-HG1
Q73	51 K 474575 7418716	334 m	2	CD-CSSSF1
Q74	51 K 471635 7420533	330 m	2	D-HG1
Q75	51 K 470423 7425745	327 m	2	D-HG1
Q76	51 K 477487 7427605	326 m	2	D-HG2
Q77	51 K 479774 7426212	355 m	2	D-CFW1
Q78	51 K 479163 7425717	336 m	1	D-CFW1
Q79	51 K 481881 7453191	366 m	1	P-HG1
Q80	51 K 469463 7457967	426 m	1	RH-AFW1
Q81	51 K 466189 7458645	430 m	1	P-HG2
Q82	51 K 462021 7460906	401 m	1	P-HG1
Q83	51 K 458721 7460337	471 m	1	RH-AFW1
Q84	51 K 456171 7461097	408 m	1	P-HG1
Q85	51 K 452276 7462789	408 m	1	P-HG2
Q86	51 K 450784 7463538	388 m	1	P-HG1
Q87	51 K 445361 7465825	377 m	1	P-HG1
Q88	51 K 444048 7465810	394 m	1	OD-AFW1
Q89	51 K 437127 7465782	363 m	1	OD-EW1
Q90	51 K 433771 7465258	373 m	1	P-HG1
Q91	51 K 427026 7465796	365 m	2	D-HG2
Q92	51 K 427070 7466004	372 m	2	D-HG1
Q93	51 K 413415 7466988	352 m	2	D-HG1
Q94	51 K 402836 7468521	418 m	2	RH-MWS1
Q95	51 K 402251 7468890	412 m	1	RH-MWS1
Q96	51 K 397615 7467534	373 m	1	OD-EW1
Q97	51 K 394187 7469167	400 m	1	OD-AFW1
Q98	51 K 390119 7471122	398 m	1	P-HG1
Q99	51 K 385849 7472069	403 m	2	RH-AFW1
Q100	51 K 376603 7474075	397 m	1	P-HG2
Q100 Q101	51 K 369226 7473901	396 m	1	D-HG2
Q101 Q102	51 K 367622 7473662	403 m	1	D-RG2 D-CFW1
Q102 Q103		•	1	P-HG2
	51 K 362824 7473058	428 m	2	
Q104	51 K 364022 7473940	441 m		RH-MWS1
Q105	51 K 358695 7472497	427 m	2	D-HG1
Q106	51 K 356663 7472445	420 m	1	D-CFW1
Q107	51 K 350895 7471756	432 m	1	D-HG1
Q108	51 K 338824 7469286	470 m	1	D-HG2
Q109	51 K 333967 7469289	456 m	1	D-CFW1
Q110	51 K 327189 7470754	473 m	1	D-HG2
Q111	51 K 316058 7473100	473 m	1	RP-HG1

Quadrat	Coordinates	Elevation	Precision (m)	Vegetation Type
Q112	51 K 312042 7473435	459 m	1	RP-AFW1
Q113	51 K 304945 7472962	454 m	1	RP-HG1
Q114	51 K 296645 7472339	480 m	1	RP-AFW1
Q115	51 K 293005 7472026	477 m	1	OD-EW1
Q116	51 K 283981 7473418	493 m	1	RP-HG1
Q117	51 K 278813 7473927	496 m	1	RP-AFW1

Transect	Easting	Northing	Transect Point
	490874	7427988	Mutual Starting point
T1	490797	7428049	Parallel end point
	490957	7428047	Perpendicular end point
	480196	7425142	Mutual Starting point
T2	480286	7425100	Parallel end point
	480211	7425163	Perpendicular end point
	472885	7428119	Mutual Starting point
Т3	472985	7428113	Parallel end point
	472888	7428126	Perpendicular end point
	471030	7426837	Mutual Starting point
T4	470933	7426867	Parallel end point
	470996	7426746	Perpendicular end point
	469195	7423628	Mutual Starting point
Т5	469111	7423666	Parallel end point
	469150	7423545	Perpendicular end point
	471096	7415895	Mutual Starting point
Т6	471014	7415940	Parallel end point
	471149	7415977	Perpendicular end point
	465686	7413435	Mutual Starting point
Т7	465681	7413532	Parallel end point
	465665	7413430	Perpendicular end point
	462229	7409696	Mutual Starting point
Т8	462256	7409791	Parallel end point
	462322	7409658	Perpendicular end point
	460345	7404680	Mutual Starting point
Т9	460406	7404601	Parallel end point
	460425	7404740	Perpendicular end point
	460091	7400034	Mutual Starting point
T10	460004	7400086	Parallel end point
	460033	7399950	Perpendicular end point
	462091	7396054	Mutual Starting point
T11	462007	7396107	Parallel end point
	462045	7395993	Perpendicular end point
	465641	7395379	Mutual Starting point
T12	465653	7395477	Parallel end point
	465603	7395401	Perpendicular end point
T40	469260	7389353	Mutual Starting point
T13	469258	7389253	Parallel end point


Transect	Easting	Northing	Transect Point
	469158	7389358	Perpendicular end point
	472752	7385855	Mutual Starting point
T14	472702	7385766	Parallel end point
	472789	7385795	Perpendicular end point
	478172	7379427	Mutual Starting point
T15	478083	7379476	Parallel end point
	478137	7379336	Perpendicular end point
	494933	7410651	Mutual Starting point
T16	494992	7410726	Parallel end point
	494940	7410627	Perpendicular end point
	494020	7420833	Mutual Starting point
T17	494056	7420744	Parallel end point
	494091	7420904	Perpendicular end point
	495316	7426429	Mutual Starting point
T18	495319	7426327	Parallel end point
	495411	7426431	Perpendicular end point


Appendix 6: Quadrat Datasheets

Provided as a separate document

Appendix 7: Quadrat Photographs

Provided as a separate document

Appendix 9: Vegetation Condition Rating

Vegetation Condition Rating	South West and Interzone Botanical Provinces	Eremaean and Northern Botanical Provinces
Pristine	Pristine or nearly so, no obvious signs of disturbance or damage caused by human activities since European settlement.	
Excellent	Vegetation structure intact, disturbance affecting individual species and weeds are non-aggressive species. Damage to trees caused by fire, the presence of non-aggressive weeds and occasional vehicle tracks.	Pristine or nearly so, no obvious signs of damage caused by human activities since European settlement.
Very Good	Vegetation structure altered, obvious signs of disturbance. Disturbance to vegetation structure caused by repeated fires, the presence of some more aggressive weeds, dieback, logging and grazing.	Some relatively slight signs of damage caused by human activities since European settlement. For example, some signs of damage to tree trunks caused by repeated fire, the presence of some relatively non-aggressive weeds, or occasional vehicle tracks.
Good	Vegetation structure significantly altered by very obvious signs of multiple disturbances. Retains basic vegetation structure or ability to regenerate it. Disturbance to vegetation structure caused by very frequent fires, the presence of very aggressive weeds, partial clearing, dieback and grazing.	More obvious signs of damage caused by human activity since European settlement, including some obvious impact on the vegetation structure such as that caused by low levels of grazing or slightly aggressive weeds.
Poor		Still retains basic vegetation structure or ability to regenerate it after very obvious impacts of human activities since European settlement, such as grazing, partial clearing, frequent fires or aggressive weeds.
Degraded	Basic vegetation structure severely impacted by disturbance. Scope for regeneration but not to a state approaching good condition without intensive management. Disturbance to vegetation structure caused by very frequent fires, the presence of very aggressive weeds at high density, partial clearing, dieback and grazing.	Severely impacted by grazing, very frequent fires, clearing or a combination of these activities. Scope for some regeneration but not to a state approaching good condition without intensive management. Usually with a number of weed species present including very aggressive species.
Completely Degraded	The structure of the vegetation is no longer intact and the area is completely or almost completely without native species. These areas are often described as 'parkland cleared' with the flora comprising weed or crop species with isolated native trees and shrubs.	Areas that are completely or almost completely without native species in the structure of their vegetation; i.e. areas that are cleared or 'parkland cleared' with their flora comprising weed or crop species with isolated native trees or shrubs.